【题目】下列各组条件中,能判断两个直角三角形全等的是( )
A. 两组直角边对应相等
B. 一组边对应相等
C. 两组锐角对应相等
D. 一组锐角对应相等
参考答案:
【答案】A
【解析】试题分析:利用SAS、HL、AAS进行判定.
解:A、可以利用边角边判定两三角形全等,故本选项正确;
B、两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,则选项错误;
C、两个锐角分别相等,只有角没有边,不能判定全等,此选项错误;
D、一组锐角对应相等,隐含一个条件是两直角相等,根据角对应相等,不能判定三角形全等,故选项错误.
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知直线y=﹣
x+3分别交x轴,y轴于点A,点B.点P是射线AO上的一个动点.把线段PO绕点P逆时针旋转90°得到的对应线段为PO′,再延长PO′到C使CO′=PO′,连结AC,设点P坐标为(m,0),△APC的面积为S.(1)直接写出OA和OB的长,OA的长是 ,OB的长是 ;
(2)当点P在线段OA上(不含端点)时,求S关于m的函数表达式;
(3)当以A,P,C为顶点的三角形和△AOB相似时,求出所有满足条件的m的值;
(4)如图②,当点P关于OC的对称点P′落在直线AB上时,m的值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:直线AB与直线CD相交于点O,∠BOC=45°,

(1)如图1,若EO⊥AB,求∠DOE的度数;
(2)如图2,若EO平分∠AOC,求∠DOE的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学习有理数得乘法后,老师给同学们这样一道题目:计算:49
×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣
×5=﹣
=﹣249
;小军:原式=(49+
)×(﹣5)=49×(﹣5)+
×(﹣5)=﹣249
;(1)对于以上两种解法,你认为谁的解法较好?
(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;
(3)用你认为最合适的方法计算:19
×(﹣8) -
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题:①负数没有立方根,②一个实数的立方根不是正数就是负数,③一个正数或负数的立方根与这个数的符号一致,④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确的是( )
A、1 B、2 C、3 D、4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图、矩形ABCD中,AB=8,AD=6.点M是对角线AC上的一个动点,以M点为圆心,线段AM长为半径画一个⊙M,若⊙M在以C为端点的矩形ABCD边上截得的线段EF=
AM,则线段AM的长是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为
.[问题情境]
已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).

[综合运用]
(1)运动开始前,A、B两点的距离为 ;线段AB的中点M所表示的数 .
(2)点A运动t秒后所在位置的点表示的数为 ;点B运动t秒后所在位置的点表示的数为 ;(用含t的代数式表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?
(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合)
相关试题