【题目】如图,矩形ABCD中,AB=2,BC=4,点A、B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是 . ![]()
参考答案:
【答案】(1+2
,2).
【解析】根据30°角所对的直角边等于斜边的一半求出OB的长度,然后过点C作CE⊥x轴于点E,根据直角三角形的性质求出∠CBE=30°,在Rt△BCE中求出CE、BE的长度,再求出OE的长度,即可得解.
∵AB=2,∠OAB=30°,
∴OB=
AB=1,
在矩形ABCD中,∠ABC=90°,
∴∠OAB+∠ABO=90°,∠AB0+∠CBE=90°,
∴∠CBE=∠OAB=30°,
点C作CE⊥x轴于点E,
![]()
在Rt△BCE中,CE=
BC=
×4=2,BE=
,
∴OE=OB+BE=1+2
,
∴点C的坐标是(1+2
,2).
根据30°角所对的直角边等于斜边的一半求出OB的长度,然后过点C作CE⊥x轴于点E,根据直角三角形的性质求出∠CBE=30°,在Rt△BCE中求出CE、BE的长度,再求出OE的长度,即可得解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AH是⊙O的直径,矩形ABCD交⊙O于点E,连接AE,将矩形ABCD沿AE折叠,点B落在CD边上的点F处,画直线EF.

(1)求证:直线EF是⊙O的切线.
(2)若CD=10,EB=5,求⊙O的直径. -
科目: 来源: 题型:
查看答案和解析>>【题目】学生在操场上利用三角函数测量旗杆AB的高,直线l为水平地面,两个同学把30°的三角板和量角器按如图所示的方式垂直放在地面上,量角器的零刻度线与地面重合,此时旗杆顶部B的影子恰好落在三角形板的顶点D处和量角器37°的刻度C处,已知三角形板的边DE=60厘米,量角器的半径r=25厘米,量角器的圆心O到A的距离为5米.

(1)则∠AOC=°(直接写出答案)
(2)求旗杆AB的高度(精确到0.1米,参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,
≈1.73) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.
求证:(1)AM⊥DM;
(2)M为BC的中点.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将点A先向右平移3个单位长度,在向下平移5个单位长度,得到A’;将点B先向下平移5个单位长度,再向右平移4个单位长度,得到B’,则A’与B’相距( )

A. 4个单位长度 B. 5个单位长度 C. 6个单位长度 D. 7个单位长度
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按
元/公里计算,耗时费按
元/分钟计算(总费用不足
元按
元计价).小敏、小刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如下表:里程数
(公里)耗时
(分钟)车费(元)
小敏



小刚



求
的值;
若小华也用该打车方式打车,平均车速为
公里/时,行驶了
公里,那么小华的打车总费用为多少?
相关试题