【题目】如图,正方形ABCD和正方形AEFG,边AE在边AB上,AB=2AE=2.将正方形AEFG绕点A逆时针旋转60°,BE的延长线交直线DG于点P ,旋转过程中点P运动的路线长为_______.
![]()
参考答案:
【答案】
【解析】试题解析:在△DAG和△BAE中
![]()
∴△DAG≌△BAE(SAS),
∴∠ADG=∠ABE,
如图1,∵∠1=∠2,
∴
连接BD,则△BPD是以BD为斜边的直角三角形,
设BD的中点为O,连接OP,则
∴旋转过程中,点P运动的路线是以O为圆心,以OP为半径的一段弧,
如图2,当边AE在边AB上时,P与A重合,当
时,设AB的中点为M,连接ME,则
∴△AEM是等边三角形,
∴
∴
∴B、E.F三点共线,
∴P与F重合,
连接AF,可得△OFA是等边三角形,
∴点P运动的路线长为:
故答案为: ![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】①将下列各数填入相应的括号中:
0,-2019,7.01,+6,+30﹪,

负数:{ }
正数:{ }
整数:{ }
②.画一条数轴,在数轴上标出以下各点,然后用“<”符号连起来.
-
;-(-4);-|-1|;
;0;
;2.5; -
科目: 来源: 题型:
查看答案和解析>>【题目】为了改善教室空气环境,某校九年级1班班委会计划到朝阳花卉基地购买绿植.已知该基地一盆绿萝与一盆吊兰的价格之和是12元.班委会决定用60元购买绿萝,用90元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.
(1)分别求出每盆绿萝和每盆吊兰的价格;
(2)该校九年级所有班级准备一起到该基地购买绿萝和吊兰共计90盆,其中绿萝数量不超过吊兰数量的一半,该基地特地对吊兰价格给出了如下的优惠政策,一次性购买的吊兰超过20盆时,超过部分的吊兰每盆的价格打8折,根据该基地的优惠信息,九年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a是最大的负整数,b、c满足
,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;

(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?
(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)
-
科目: 来源: 题型:
查看答案和解析>>【题目】“滴滴快车”是一种便捷的出行工具,计价规则如下表:
计费项目
里程费
时长费
单价
1.4元/千米
0.5元/分钟
注:车费由里程费、时长费两部分构成,其中里程费按行车的实际里程计费,时长费按行车的实际时间计算。车费不足8元的按最低消费8元收取。为了推广和扩大“滴滴快车”的市场占有率,公司近期推出优惠政策,凡车费满10元,将给予8折优惠。
随着互联网的不断发展,更多的人们选择了“滴滴快车”出行。假设“滴滴快车”的平均行车速度为50 km/h,请回答下列问题:
(1)小明和小冰各自乘坐“滴滴快车”,行车里程分别为3千米和10千米,请问他们各自需付车费多少钱?
(2)张老师与王老师的家和学校在同一条直线上,位置如图所示.一天,张老师和王老师各自从学校“滴滴快车”回家,分别付车费9.6元和24元.请问,张老师和王老师的家相距多少千米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】图1是一段圆柱体的树干的示意图,已知树干的半径r=10cm,AD=45cm. (π值取3)
(1)若螳螂在点A处,蝉在点C处,图1中画出了螳螂捕蝉的两条路线,即A→D→C和A→C,图2是该圆柱体的侧面展开图,判断哪条路的距离较短,并说明理由;
(2)若螳螂在点A处,蝉在点D处,螳螂想要捕到这只蝉,但又怕蝉发现,于是螳螂绕到
后方去捕捉它,如图3所示,求螳螂爬行的最短距离;(提示:
=75)(3)图4是该圆柱体的侧面展开图,蝉N在半径为10cm的⊙O的圆上运动,⊙O与BC相切,点O到CD的距离为20cm,螳螂M在线段AD运动上,连接MN,MN即为螳螂捕蝉时螳螂爬行的距离,若要使MN与⊙O总是相切,求MN的长度范围.

图1 图2 图3 图4
-
科目: 来源: 题型:
查看答案和解析>>【题目】某县对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:

(1)样本容量为 ;
(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在 4.6 以上(含 4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
相关试题