【题目】已知:如图,反比例函数y=
的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点. ![]()
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.
参考答案:
【答案】
(1)解:∵A(1,3)在y=
的图象上,
∴k=3,∴y=
.
又∵B(n,﹣1)在y=
的图象上,
∴n=﹣3,即B(﹣3,﹣1)
∴ ![]()
解得:m=1,b=2,
∴反比例函数的解析式为y=
,一次函数的解析式为y=x+2
(2)解:从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值
【解析】(1)反比例函数y=
的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点,把A点坐标代入反比例函数解析式,即可求出k,得到反比例函数的解析式.将B(n,﹣1)代入反比例函数的解析式求得B点坐标,然后再把A、B点的坐标代入一次函数的解析式,利用待定系数法求出一次函数的解析式;(2)根据图象,分别在第一、三象限求出反比例函数的值大于一次函数的值时x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:△ABC绕点A逆时针方向旋转得到△ADE,其中∠B=50°,∠C=60°.
(1)若AD平分∠BAC时,求∠BAD的度数.
(2)若AC⊥DE时,AC与DE交于点F,求旋转角的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.

(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司有某种海产品2104千克,寻求合适价格,进行8天试销,情况如下:
第几天
1
2
3
4
5
6
7
8
销售价格(元/千克)
400
A
250
240
200
150
125
120
销售量(千克)
30
40
48
B
60
80
96
100
观察表中数据,发现可以用某种函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系. 现假设这批海产品的销售中,每天销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)猜想函数关系式: . (不必写出自变量的取值)并写出表格中A= ,B= ;
(2)试销8天后,公司决定将售价定为150元/千克. 则余下海产品预计 天可全部售出;
(3)按(2)中价格继续销售15天后,公司发现剩余海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新价格销售,那么新确定的价格最高不超过多少元/千克才能完成销售任务?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了配合“八荣八耻”宣传教育,针对闯红灯的现象时有发生的实际情况,八年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成8个小组,其中第①~⑥组分别负责早.中.晚三个时段闯红灯违章现象的调查,第⑦小组负责查阅有关红绿灯的交通法规,第⑧小组负责收集有关的交通标志. 数据汇总如下:
部分时段车流量情况调查表
时间
负责组别
车流总量
每分钟车流量
早晨上学6:30~7:00
①②
2747
92
中午放学11:20~11:50
③④
1449
48
下午放学5:00~5:30
⑤⑥
3669
122

回答下列问题:
(1)请你写出2条交通法规.
(2)早晨.中午.晚上三个时段每分钟车流量的极差是多少,这三个时段的车流总量的中位数是多少.
(3)观察表中的数据及条形统计图,写出你发现的一个现象并分析其产生的原因.
(4)通过分析写一条合理化建议.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①在△ABC中,点D是BC边上的一点,将△ABD沿AD折叠,得到△AED,AE与BC交于点F.已知∠B=50°,∠BAD=15°,求∠AFC的度数.
(2)如图②,将△ABC纸片沿DE折叠,使点A落在四边形BCED的内部点A′的位置,∠1、∠2与∠A之间存在一定的数量关系,请判断它们之间的关系,并说明理由.
(3)如图③,将△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,此时∠1、∠2与∠A之间也存在一定的数量关系,请直接写出它们之间的关系,无需说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”
四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别
频数(人数)
频率
小说
0.5
戏剧
4
散文
10
0.25
其他
6
合计
m
1

(1)计算m=;
(2)在扇形统计图中,“其他”类所占的百分比为;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.
相关试题