【题目】如图,在△ABC中,点D是边AB的四等分点,DE∥AC,DF∥BC,AC=8,BC=12,求四边形DECF的周长. ![]()
参考答案:
【答案】解:∵DE∥AC,DF∥BC, ∴四边形DFCE是平行四边形,
∴DE=FC,DF=EC
∵DF∥BC,
∴△ADF∽△ABC,
∴
,
∵AC=8,BC=12,
∴AF=2,DF=3
∴FC=AC﹣AF=8﹣2=6,
∴DE=FC=6,DF=EC=3
∴四边形DECF的周长是DF+CF+CE+DE=3+6+3+6=18.
答:四边形DECF的周长是18
【解析】根据平行四边形的判定得出四边形DFCE是平行四边形,证△ADF∽△ABC,得出
,代入求出DF、AE即可求出答案.
【考点精析】通过灵活运用平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,已知AB=AC,D、E、B、C在同一条直线上,且AB2=BDCE,求证:△ABD∽△ECA.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将一个三角形和一个矩形按照如图的方式扩大,使他们的对应边之间的距离均为1,得到新的三角形和矩形,下列说法正确的是 ( )

A.新三角形与原三角形相似
B.新矩形与原矩形相似
C.新三角形与原三角形、新矩形与原矩形都相似
D.都不相似 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E
使AE∥BC,连接AE。
(1)求证:四边形ADCE是矩形;
(2)①若AB=17,BC=16,则四边形ADCE的面积= ;
②若AB=10,则BC= 时,四边形ADCE是正方形。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知线段AB,P1是AB的黄金分割点(AP1>BP1),点O是AB的中点,P2是P1关于点O的对称点.求证:P1B是P2B和P1P2的比例中项.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,求证:点D是AC的黄金分割点.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是 .

相关试题