【题目】如图,在等边三角形ABC中,AB=2,动点D从B开始沿BC向点C运动,到达点C后停止运动,将△ABD绕点A旋转后得到△ACE,则下列说法中,正确的是( )
①DE的最小值为1;②ADCE的面积是不变的;③在整个运动过程中,点E运动的路程为2;④在整个运动过程中,△ADE的周长先变小后变大.
![]()
A. ①③④ B. ①②③ C. ②③④ D. ①②④
参考答案:
【答案】C
【解析】
根据旋转的性质易证△ADE为等边三角形,可得DE=AD,当AD⊥BC时,AD最小,由此求得AD=
,即可判定①错误;由旋转的性质可得△ABD的面积=△ACE的面积,即可得DCE的面积=等边三角形ABC的面积,由此判断②正确;由题意可得点E运动的路程等于等边三角形的边长即为2,即可判定③正确;在整个运动过程中,AD先变小,在变大,由(1)可知△ADE为等边三角形,即可得△ADE的周长先变小后变大,即可得④正确.
当BD=DC时,DE有最小值,
∵△ABC为等边三角形,
∴AB=BC=2,∠B=∠BAC=60°,
∵D是BC的中点,即BD=DC=
BC=1,
∴AD⊥BC,∠BAD=30°,
∴AD=
BD=
,
∵△ABD绕点A旋转后得到△ACE,
∴∠DAE=∠BAC=60°,AD=AE,
∴△ADE为等边三角形,
∴DE=AD=
,
故①错误;
∵将△ABD绕点A旋转后得到△ACE,
∴△ABD的面积=△ACE的面积,
∴ADCE的面积=等边三角形ABC的面积,
故②正确;
在整个运动过程中,点E运动的路程等于等边三角形的边长即为2,
故③正确;
在整个运动过程中,△ADE的周长先变小后变大,④正确;
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )

A. 20 B. 25 C. 30 D. 32
-
科目: 来源: 题型:
查看答案和解析>>【题目】勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
请根据图1中直角三角形叙述勾股定理.

以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;
利用图2中的直角梯形,我们可以证明
.其证明步骤如下:∵BC=a+b,AD=_____;
又∵在直角梯形ABCD中有BC_____AD(填大小关系),即_____.
∴
. -
科目: 来源: 题型:
查看答案和解析>>【题目】如下图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是( )

A. 8+2a B. 8+a C. 6+a D. 6+2a
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1的长方形ABCD中,E点在AD上,且BE=2AE.今分别以BE、CE为折线,将A、D向BC的方向折过去,图2为对折后A、B、C、D、E五点均在同一平面上的位置图.若图2中,∠AED=15°,则∠BCE的度数为何?( )

A. 30 B. 32.5 C. 35 D. 37.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(
,0),有下列结论:①abc>0;
②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0; ⑤a﹣b≥m(am﹣b);
其中所有正确的结论是( )
A.①②③
B.①③④
C.①②③⑤
D.①③⑤ -
科目: 来源: 题型:
查看答案和解析>>【题目】等边△ABC内有一点P,且PA=3,PB=4,PC=5,则∠APB=度.
相关试题