【题目】如图,已知△ABC.
(1)若AB=4,AC=5,则BC边的取值范围是 ;
(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.
![]()
参考答案:
【答案】(1)1<BC<9;(2)70°
【解析】试题分析:(1)根据三角形三边关系即可得;
(2)由∠ACD=125°,求得∠ACB=55°,再由DE∥AC,求得∠BDE =55°,再根据三角形的内角和即可求得.
试题解析:(1)由已知得:5-4<BC<5+4,即1<BC<9;
(2)∵∠ACD=125°,
∴∠ACB=180°﹣∠ACD=55°,
∵DE∥AC,
∴∠BDE=∠ACB=55°,
∵∠E=55°,
∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.
(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;
(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;
(3)请根据图2证明:△FGC∽△PFB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC约为多少米?( sin42°≈0.7,tan42°≈0.9)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中、D、E分别是AB,BC上任意一点,连结DE,若BD=4,DE=5.
(1)BE的取值范围 ;
(2)若DE∥AC,∠A=85°,∠BED=35°,求∠B的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.
(1)求该品牌新能源汽车销售量的月均增长率;
(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题解决:如图1,△ABC中,AF为BC边上的中线,则S△ABF= S△ABC.
问题探究:
(1)如图2,CD,BE分别是△ABC的中线,S△BOC与S四边形ADOE相等吗?
解:△ABC中,由问题解决的结论可得,S△BCD=
S△ABC,S△ABE=
S△ABC.∴S△BCD=S△ABE
∴S△BCD﹣S△BOD=S△ABE﹣S△BOD
即S△BOC=S四边形ADOE.
(2)图2中,仿照(1)的方法,试说明S△BOD=S△COE.
(3)如图3,CD,BE,AF分别是△ABC的中线,则S△BOC= S△ABC,S△AOE= S△ABC,S△BOD= S△ABF.

问题拓展:
(4)①如图4,E、F分别为四边形ABCD的边AD、BC的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S阴影= S四边形ABCD.
②如图5,E、F、G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S阴影= S四边形ABCD.

相关试题