【题目】如图,△ABC中,CD⊥AB,垂足为D.下列条件中,能证明△ABC是直角三角形的有
①∠A+∠B=90°
②AB2=AC2+BC2
③
④CD2=ADBD.![]()
参考答案:
【答案】①②④
【解析】解:①∵三角形内角和是180°,由①知∠A+∠B=90°,
∴∠ACB=180°﹣(∠A+∠B)=180°﹣90°=90°,
∴△ABC是直角三角形.所以答案是:项①正确.②AB,AC,BC分别为△ABC三个边,由勾股定理的逆定理可知,②正确.③题目所给的比例线段不是△ACB和△CDB的对应边,且夹角不相等,无法证明△ACB与△CDB相似,也就不能得到∠ACB是直角,故③错误;④若△ABC是直角三角形,已知CD⊥AB,
又∵CD2=ADBD,(即
)
∴△ACD∽△CBD
∴∠ACD=∠B
∴∠ACB=∠ACD+∠DCB=∠B+∠DCB=90°
△ABC是直角三角形
∴所以答案是:项④正确;
所以答案是:①②④.
【考点精析】通过灵活运用勾股定理的逆定理和相似三角形的判定与性质,掌握如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】按图填空,并注明理由.
已知: 如图,∠1=∠2,∠3=∠E. 求证:AD∥BE.
证明: ∵∠1=∠2 (已知)
∴ BD ∥ ( )
∴ ∠E = ( )
又 ∵ ∠E=∠3 ( 已知 )
∴ ∠3=∠ ( )
∴ AD∥BE.( )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象过(﹣2,0),则下列结论:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0,其中正确结论的个数是( )

A.5
B.4
C.3
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,M是AC上一点,N是BC上一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为( )

A. 110° B. 105° C. 90° D. 85°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①
BCD≌
CBE;②
BAD≌
BCD;③
BDA≌
CEA;④
BOE≌
COD;⑤
ACE≌
BCE;上述结论一定正确的是
A. ①②③ B. ②③④ C. ①③⑤ D. ①③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求证:AB∥CD;
(2)求∠C的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F。

(1)求证:△ABE≌△CAD;(2)求∠BFD的度数。
相关试题