【题目】已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
则正确的结论是( )![]()
A.①②③④
B.②④⑤
C.②③④
D.①④⑤
参考答案:
【答案】D
【解析】解:∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,故①正确; ∵抛物线对称轴为x=﹣
<0,与y轴交于负半轴,∴ab>0,c<0,abc<0,故②错误;
∵抛物线对称轴为x=﹣
=﹣1,∴2a﹣b=0,故③错误;
∵当x=1时,y>0,即a+b+c>0,故④正确;
∵当x=﹣1时,y<0,即a﹣b+c<0,故⑤正确;
正确的是①④⑤.
故选D.
【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】图①,②分别是根据某地近两年6月上旬日平均气温情况绘制的折线统计图,通过观察图表回答:

去年6月上旬①

今年6月上旬②
(1)该地这两年6月上旬日平均气温分别是多少?
(2)该地这两年6月上旬日平均气温的极差分别是多少?由此可以判断哪一年6月上旬气温比较稳定?
折线图能直观地反映数据的变化趋势,能比较容易地看出变动范围,求出极差,运用时还要注意观察,通过纵横坐标的交点寻找所需要的数据信息,根据信息和题目要求作出正确分析.
观察图可知去年6月上旬的日平均气温(单位:℃)分别是:24,30,29,24,23,26,27,26,30,26.由图可知今年6月上旬的日平均气温(单位 ℃)分别是:24,26,25,26,24,26,27,26,27,26.然后求这两年的平均气温及极差.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学活动﹣旋转变换

(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°,得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆. (Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
(Ⅱ)连接A′B,求线段A′B的长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2+bx+c与x轴交A(﹣1,0)B(3,0)两点,直线l与抛物线交于A,C两点,其中C点的横坐标为2.

(1)求抛物线的解析式;
(2)求直线AC的函数表达式;
(3)若点M是线段AC上的点(不与A,C重合),过M作MF∥y轴交抛物线于F,交x轴于点H,设点M的横坐标为m,连接FA,FC,是否存在m,使△AFC的面积最大?若存在,求m的值;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:
每人加工零件个数
540
450
300
240
210
120
人数
1
1
2
6
3
2
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)假如生产部负责人把每位工人的月加工零件个数定为260,你认为这个定额是否合理?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.

(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由.
相关试题