【题目】为响应区“美丽广西 清洁乡村”的号召,某校开展“美丽广西 清洁校园”的活动,该校经过精心设计,计算出需要绿化的面积为498m2 , 绿化150m2后,为了更快的完成该项绿化工作,将每天的工作量提高为原来的1.2倍.结果一共用20天完成了该项绿化工作.
(1)该项绿化工作原计划每天完成多少m2?,
(2)在绿化工作中有一块面积为170m2的矩形场地,矩形的长比宽的2倍少3m,请问这块矩形场地的长和宽各是多少米?
参考答案:
【答案】
(1)
解:设该项绿化工作原计划每天完成xm2,则提高工作量后每天完成1.2xm2,
根据题意,得
,解得x=22.
经检验,x=22是原方程的根.
答:该项绿化工作原计划每天完成22m2.
(2)
解:设矩形宽为y m,则长为(2y﹣3)m,
根据题意,得y(2y﹣3)=170,解得y=10或y=﹣8.5 (不合题意,舍去).
2y﹣3=17.
答:这块矩形场地的长为17m,宽为10m.
【解析】(1)根据一共用20天列出分式方程求解即可;(2)根据矩形的面积为170m2列出一元二次方程求解即可.
【考点精析】根据题目的已知条件,利用分式方程的应用的相关知识可以得到问题的答案,需要掌握列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰梯形ABCD中,DC∥AB,E是DC延长线上的点,连接AE,交BC于点F.

(1)求证:△ABF∽△ECF;
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】“中秋节”是我国的传统佳节,历来都有赏月,吃月饼的习俗.小明家吃过晚饭后,小明的母亲在桌子上放了四个包装纸盒完全一样的月饼,它们分别是2个豆沙,1个莲蓉和1个叉烧.
(1)小明随机拿一个月饼,是莲蓉的概率是多少?
(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(﹣3,0),交y轴于点B(0,2),并与y=
的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线.
(1)求一次函数与反比例函数的解析式;
(2)若点C′是点C关于y轴的对称点,请求出△ABC′的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,以AB为直径的⊙O交AC于点D,直径AB左侧的半圆上有一点动点E(不与点A、B重合),连结EB、ED.

(1)如果∠CBD=∠E,求证:BC是⊙O的切线;
(2)当点E运动到什么位置时,△EDB≌△ABD,并给予证明;
(3)在(1)的条件下,若tanE=
,BC=
,求阴影部分的面积.(计算结果精确到0.1)
(参考数值:π≈3.14,
≈1.41,
≈1.73) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2 . C2的图象与x轴交于A、B两点(点A在点B的左侧).

(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形?如果存在,请求出点G的坐标;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)8+(﹣
)﹣5﹣(﹣0.25)(2)﹣82+72÷36
(3)﹣4.2+5.7﹣8.4﹣2.3
(4)25×
+25×(﹣
)(5)|﹣0.2|﹣|﹣3﹣(+8)|﹣|﹣8﹣2+10|
(6)(﹣5)×(﹣8)×(﹣2.5)×9
相关试题