【题目】如图,客轮沿折线A—B—C从A点出发经过B点再到C点匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批货物送达客轮,两船同时起航,并同时到达折线A—B—C上的某点E处,已知AB=BC=200海里,∠ABC=90°,客轮的速度是货轮速度的2倍.
(1)选择题:两船相遇之处E点( )
A.在线段AB上
B.在线段BC上
C.可能在线段AB上,也可能在线段BC上
(2)货轮从出发到两船相遇共航行了多少海里?
![]()
参考答案:
【答案】(1)B;(2) (200-
)海里.
【解析】
由于△ABC是等腰直角三角形,D为AC的中点,而客轮速度是货轮速度的2倍,从出发到相遇,客轮走的路程应是货轮的2倍,根据等腰直角三角形性质和三角形三边关系,不难判断两轮相遇的大致位置;
(2)设货轮从出发到两船相遇共航行了x海里,过D点作DF⊥CB于F,连接DE,则DE=x,AB+BE=2x,根据D点是AC的中点,得DF=
AB=100,EF=400-100-2x,在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2解方程求解即可.
解:(1) (1)若货轮沿DB方向航行,∵△ABC为等腰直角三角形,点D为AC中点,
∴AD=BD.
由三角形三边关系,知AD+BD>AB,
即2BD>AB,
因此两轮不可能在AB边上相遇,
所以两轮只能在BC边上相遇.
故选B.
(2)设货轮从出发到两船相遇共航行了x海里,过D点作DF⊥CB于F,连结DE,DB,如图,则DE=x海里,AB+BE=2x海里,
∵D点是AC的中点,
∴DF=
AB=100海里,EF=(400-100-2x)海里,
在Rt△DFE中,DE2=DF2+EF2,得x2=1002+(300-2x)2,
解得x=200±
,
∵200+
>
不合题意,舍去,
∴DE=(200-
)海里.
答:货轮从出发到两船相遇共航行了(200-
)海里.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线AC的表达式为y=
x+8,点P从点A开始沿AO向点O以1个单位/s的速度移动,点Q从点O开始沿OC向点C以2个单位/s的速度移动.如果P,Q两点分别从点A,O同时出发,经过几秒能使△PQO的面积为8个平方单位?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行于x轴的直线AC分别交抛物线
(x≥0)与
(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则
= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x , 其对称轴与两抛物线所围成的阴影部分的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC和∠BOC互补,则弦BC的长度为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的AEMG的面积S1与HCFM的面积S2的大小关系是( )

A. S1>S2 B. S1<S2 C. S1=S2 D. 2S1=S2
-
科目: 来源: 题型:
查看答案和解析>>【题目】一圆的半径是10cm,圆内的两条平行弦长分别为12cm和16cm,则这两条平行弦之间的距离为 .
相关试题