【题目】小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )![]()
A.600﹣250
米
B.600
﹣250米
C.350+350
米
D.500
米
参考答案:
【答案】B
【解析】解:∵BE:AE=5:12,
=13,
∴BE:AE:AB=5:12:13,
∵AB=1300米,
∴AE=1200米,
BE=500米,
设EC=x米,
∵∠DBF=60°,
∴DF=
x米.
又∵∠DAC=30°,
∴AC=
CD.
即:1200+x=
(500+
x),
解得x=600﹣250
.
∴DF=
x=600
﹣750,
∴CD=DF+CF=600
﹣250(米).
答:山高CD为(600
﹣250)米.
故选:B.
![]()
【考点精析】解答此题的关键在于理解关于坡度坡角问题的相关知识,掌握坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市上网有两种收费方案,用户可任选其一,A为计时制--1元
时;B为包月制--80元
月,此外每种上网方式都附加通讯费
元
时.
某用户每月上网40小时,选哪种方式比较合适?
某用户每月有100元钱用于上网,选哪种方式比较合算?
请你设计一个方案,使用户能合理地选择上网方式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点D是
上一点,且∠BDE=∠CBE,BD与AE交于点F. 
(1)求证:BC是⊙O的切线;
(2)若BD平分∠ABE,求证:DE2=DFDB;
(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径. -
科目: 来源: 题型:
查看答案和解析>>【题目】将下列不等式化为“x>a”或“x<a”的形式:
(1)2x>3x-4;
(2)5x-1<14;
(3)-
x<-3;(4)
x<
x+1. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB和CD中点P1、P2,然后写出它们的坐标,则P1 ,P2 .
探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为 .
拓展应用:(3)利用上述规律解决下列问题:已知三点E(﹣1,2),F(3,1),G(1,4),第四个点H(x,y)与点E、点F、点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1 , 第二次将点A1向右移动6个单位长度到达点A2 , 第三次将点A2向左移动9个单位长度到达点A3 , 则A3表示的数是按照这种移动规律移动下去,第n次移动到点AN , 如果点AN与原点的距离不小于20,那么n的最小值是 .

相关试题