【题目】如图,数轴上有A,B两点,AB=18,原点O是线段AB上的一点,OA=2OB.
(1)求出A,B两点所表示的数;
(2)若点C是线段AO上一点,且满足 AC=CO+CB,求C点所表示的数;
(3)若点E以3个单位长度/秒的速度从点A沿数轴向点B方向匀速运动,同时点F以1个单位长度/秒的速度从点B沿数轴向右匀速运动,并设运动时间为t秒,问t为多少时,E、F两点重合.并求出此时数轴上所表示的数.
![]()
参考答案:
【答案】(1)A,B两点所表示的数分别是﹣12,6;(2)C点所表示的数是﹣2;(3)t=9时,E、F两点重合,数轴上所表示的数为15.
【解析】
(1)由OA=2OB,OA+OB=18即可求出OA、OB;
(2)设OC=x,则AC=12﹣x,BC=6+x,根据AC=CO+CB列出方程即可解决;
(3)由点E运动路程=18+点F运动路程,可列方程,可求t的值.
解:(1)∵OA+OB=AB=18,且OA=2OB
∴OB=6,OA=12,
∴A,B两点所表示的数分别是﹣12,6;
(2)设OC=x,则AC=12﹣x,BC=6+x,
∵AC=CO+CB,
∴12﹣x=x+6+x,
∴x=2,
∴OC=2,
∴C点所表示的数是﹣2;
(3)根据题意得:3t=18+t,
∴t=9
∴当t=9时,E、F两点重合,
此时数轴上所表示的数为OB+9=6+9=15.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下面三行数:
第1列
第2列
第3列
第4列
…
第n列
﹣3
9
a
81
…
r
1
﹣3
9
b
…
s
﹣2
10
c
82
…
t
(1)直接写出a,b,c的值;
(2)直接写出r,s,t的值;
(3)设x,y,z分别为第①②③行的第2019个数,求x+6y+z的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有若干个数,第一个数记为a1,第2个数记为a2,第3个数记为a3,……,第n个数记为an,若a1=﹣
,从第二个数起,每一个数都是“1”与它前面那个数的差的倒数.(1)直接写出a2,a3,a4的值;
(2)根据以上结果,计算a1+a2+a3+…+a2017+a2018.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>6且x<14,单位:km):
第一次
第二次
第三次
第四次
x

x﹣5
2(6﹣x)
(1)写出这辆出租车每次行驶的方向;
(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x表示);
(3)这辆出租车一共行驶了多少路程(结果用x表示)?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.
(1)判断3253和254514是否为“十三数”,请说明理由.
(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.
①求证:任意一个四位“间同数”能被101整除.
②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)5.6+(-0.9)+4.4+(-8.1)+(-0.1)
(2)

(3)

(4)

(5)

(6)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则下列说法中:①第n个正方形包含(4n+4)枚白色棋子;②第n个正方形包含n2枚黑色棋子;③第n个正方形包含(n+2)2﹣n2枚白色棋子;④第n个正方形一共包含(n+1)2枚棋子,正确的个数是( )

A. 1个B. 2个C. 3个D. 4个
相关试题