【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.
![]()
参考答案:
【答案】(1)150(2)45,30%
【解析】
(1)用A的人数除以所占的百分比,即可求出调查的学生数;
(2)用抽查的总人数减去A、C、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;
解:(1) 15÷10%=150(名)
答:共调查了150名学生,
(2)150-15-60-30=45(名),
45÷150×100%=30%,
如图,
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围.
(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了美化校园计划购买茶花、桂花两种树苗共600株,茶花树苗每株35元,桂花树苗每株40元.相关资料表明:茶花、桂花树苗的成活率分别为80%,90%.
(1)若购买这两种树苗共用去22000元,则茶花、桂花树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于85%,则茶花树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是长方形纸袋,将纸袋沿EF折叠成图2,再沿BF折叠成图3,若∠DEF=α,用α表示图3中∠CFE的大小为 _________ .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校七年级为了开展球类兴趣小组,需要购买一批足球和篮球﹒若购买3个足球和5个篮球需580元;若购买4个足球和3个篮球需480元.
(1)求出足球和篮球的的单价分别是多少?
(2)已知该年级决定用800元购进这两种球,若两种球都要有,请问有几种购买方案,并请加以说明﹒
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在边长为1的小正方形网格中,△ABC的顶点都在格点上,建立适当的平面直角坐标系xOy,使得点A、B的坐标分别为(2,3)、(3,2).
(1)在网格中画出满足要求的平面直角坐标系,写出点C的坐标为 ;
(2)若点P是x轴上的一个动点,则PA+PB的最小值为 .(直接写出结果)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,请描出A(-3,-2),B(2,-2),C(3,1),D(-2,1)四个点。
(1)线段AB、CD有什么关系?
(2)顺次连接A、B、C、D四点组成的图形是什么图形?

相关试题