【题目】已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:
(1)直线AB的解析式;
(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.
![]()
参考答案:
【答案】(1)y=
x+4;(2)6.
【解析】(1)将x=3代入y=x中求出y值,即得出点E的坐标,结合点A、E的坐标利用待定系数法即可求出直线AB的解析式;
(2)由点F的坐标可表示出点C、D的坐标,由此即可得出线段CD的长度,根据平行四边形的判定定理即可得出CD=OB,即得出关于a的方程,解方程即可得出结论.
解:(1)把x=3代入y=x,得y=3,
∴E(3,3),
把A(12,0)、E(3,3)代入y=kx+b中,
得:
,解得:
,
∴直线AB的解析式为y=
x+4.
(2)由题意可知C、D的横坐标为a,
∴C(a,
a+4),D(a,a),
∴CD=|a﹣(
a+4)|=|
a﹣4|.
若以点B、O、C、D为顶点的四边形是平行四边形,
则CD=OB=4,即|
a﹣4|=4,
解得:a=6或a=0(舍去).
故:当以点B、O、C、D为顶点的四边形是平行四边形时,a的值为6.
“点睛”本题考查了一次函数图象上点的坐标特征、待定系数法求函数解析式以及平行四边形的判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据CD=OB得出关于a的方程.本体属于中档题,难度不大,解决该题型题目时,根据平行四边形的判定找出相等的线段是关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将抛物线y=2x2的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是( )
A.y=2(x﹣2)2﹣3
B.y=2(x﹣2)2+3
C.y=2(x+2)2﹣3
D.y=2(x+2)2+3 -
科目: 来源: 题型:
查看答案和解析>>【题目】“一个三角形中不可能有两个角是直角”用反证法证明时,首先应假设这形: _______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题是假命题的是( )
A. 在同圆或等圆中,同弧或等弧所对的圆周角相等
B. 平分弦的直径垂直于弦
C. 两条平行线间的距离处处相等
D. 正方形的两条对角线互相垂直平分
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高科技创新意识,我市某中学在“2016年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(每个学生只能参加一个类别的比赛),各类别参赛人数统计如图:

请根据以上信息,解答下列问题:
(1)全体参赛的学生共有 人,“建模”在扇形统计图中的圆心角是 °;
(2)将条形统计图补充完整;
(3)在比赛结果中,获得“环保”类一等奖的学生为1名男生和2名女生,获得“建模”类一等奖的学生为1名男生和1名女生,现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模”考察活动,问选取的两人中恰为1男生1女生的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠α=54°12',则∠α的补角是_____°(结果化为度)
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解学生的艺术特长发展情况,某校音乐组决定围绕在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图。

请你根据统计图解答下列问题:
(1)在这次调查中,一共抽查了 名学生。其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为 。扇形统计图中喜欢“戏曲”部分扇形的圆心角为 度。
(2)请你补全条形统计图。
(3)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项的概率。
相关试题