【题目】如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( ) ![]()
A.
cm
B.
cm
C.
cm
D.4cm
参考答案:
【答案】A
【解析】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F, ![]()
∵∠CAD=∠BAD(角平分线的性质),
∴
,
∴∠DOB=∠OAC=2∠BAD,
∴△AOF≌△ODE,
∴OE=AF=
AC=3(cm),
在Rt△DOE中,DE=
=4(cm),
在Rt△ADE中,AD=
=4
(cm).
故选:A.
【考点精析】根据题目的已知条件,利用勾股定理的概念和圆心角、弧、弦的关系的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=( )

A.1:4
B.1:3
C.1:2
D.1:1 -
科目: 来源: 题型:
查看答案和解析>>【题目】历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)来表示.例如f(x)=x2+3x-5,把x=某数时多项式的值用f(某数)来表示.例如x=-1时多项式x2+3x-5的值记为f(-1)=(-1)2+3×(-1)-5=-7.
(1)已知g(x)=-2x2-3x+1,分别求出g(-1)和g(-2);
(2)已知h(x)=ax3+2x2-ax-6,当h(
)=a,求a的值;(3)已知f(x)=
-
-2(a,b为常数),当k无论为何值,总有f(1)=0,求a,b的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】

(1)OA= cm,OB= cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为 cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=
(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是( ) 
A.b=2a+k
B.a=b+k
C.a>b>0
D.a>k>0 -
科目: 来源: 题型:
查看答案和解析>>【题目】关于频率与概率有下列几种说法:
①“明天下雨的概率是 90%”表示明天下雨的可能性很大;
②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上;
③“某彩票中奖的概率是 1%”表示买 10 张该种彩票不可能中奖;
④“抛一枚硬币正面朝上的概率为
”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在
附近. 正确的说法是( )
A. ①③ B. ①④ C. ②③ D. ②④
相关试题