【题目】公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.
![]()
参考答案:
【答案】见解析
【解析】试题分析:可过点P分别作关于OM,ON的对称点P′,P″,连接P′P″,与OM、ON的交点即为满足条件的建桥地点.
试题解析:如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.
![]()
理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在∠AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】ab2﹣2ab+a
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=x2-2mx+4m-8的顶点为A
(1) 求证:该抛物线与x轴总有两个交点
(2) 当m=1时,直线BC:y=kx-2与该抛物线交于B、C两点,若线段BC被x轴平分,求k的值
(3) 以A为一个顶点作该抛物线的内接正三角形AMN(M、N两点在抛物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC、BD,且AC=BD。若A到河岸CD的中点的距离为500米.

(1)牧童从A处放牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短? 用尺规作图在图中画出来
(2)最短路程是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果4x2m+2yn﹣1与﹣3x3m+1y3n﹣5是同类项,则m﹣n的值为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图△ABC中,∠C=90°,AB=5,BC=3,S、Q两点同时分别从A、C出发,点S以每秒2个单位的速度沿着AC向点C运动,点Q以每秒1个单位的速度沿着CB向点B运动.当其中一点到达终点时,另一点也随之停止运动
(1)求几秒时SQ的长为2
(2)求几秒时,△SQC的面积最大,最大值是多少?

相关试题