【题目】解不等式:
并在数轴上表示出它的解集.![]()
参考答案:
【答案】解:去分母得,﹣2x+1≥﹣3,
移项,得﹣2x≥﹣4,
系数化为1,得,x≤2,
在数轴上表示出不等式的解集为:
![]()
【解析】首先不等式两边同时乘以3,然后再移项、系数化为1即可,最后,再画出不等式的解集即可.
【考点精析】认真审题,首先需要了解不等式的解集在数轴上的表示(不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈),还要掌握一元一次不等式的解法(步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题))的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个角的补角等于它的余角4倍,则这个角的度数是度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列( )

A.﹣b<﹣a<a<b
B.a<﹣b<b<﹣a
C.﹣b<a<﹣a<b
D.a<﹣b<﹣a<b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数y=kx+b,当x=2时y的值是﹣1,当x=﹣1时y的值是5.
(1)求此一次函数的解析式;
(2)若点P(m,n)是此函数图象上的一点,﹣3≤m≤2,求n的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去租用这两种货车情况如下:
第一次
第二次
甲种货车数量
2辆
5辆
乙种货车数量
3辆
6辆
累计运货重量
14吨
32吨
(1)分别求甲、乙两种货车载重多少吨?
(2)现在租用该公司5辆甲货车和7辆乙货车一次刚好运完这批货物,如果按每吨付费50元计算,货主应付运费多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】按要求完成下列题目.
(1)求:
+
+
+…+
的值. 对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成
的形式,而
=
﹣
,这样就把
一项(分)裂成了两项.
试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出
+
+
+…+
的值.
(2)若
=
+
①求:A、B的值:
②求:
+
+…+
的值.
相关试题