【题目】如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.
(1)求证:四边形ABCD是平行四边形;
(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.
![]()
参考答案:
【答案】(1)(2)见解析
【解析】试题分析:(1)已知AB∥CD,根据两直线平行,内错角相等可得∠ABD=∠CDB,由∠AEF=∠CFB,根据平角的定义可得∠AEB=∠CFD,利用ASA证得△ABE≌△CDF,根据全等三角形的性质可得AB=CD,由AB∥CD,根据一组对边平行且相等的四边形为平行四边形即可得四边形ABCD是平行四边形;(2)平行四边形AECF是矩形,根据平行四边形的性质可得OB=OD ,OA=OC=
AC,由BE=DF证得OE=OF,根据对角线互相平分的四边形为平行四边形可判定四边形AECF是平行四边形,再证得AC=EF,根据对角线相等的平行四边形是矩形即可判定平行四边形AECF是矩形.
试题解析:
(1)证明:∵AB∥CD,
∴∠ABD=∠CDB,
又∵∠AEF=∠CFB,
∴∠AEB=∠CFD,
又∵BE=DF,
∴△ABE≌△CDF(ASA),
∴AB=CD,
又∵AB∥CD,
∴四边形ABCD是平行四边形;
(2) 平行四边形AECF是矩形,理由如下:
∵四边形ABCD是平行四边形,
∴OB=OD ,OA=OC=
AC,
∵BE=DF,
∴OB﹣BE=DO﹣DF,
∴OE=OF,
又∵OA=OC,
∴四边形AECF是平行四边形,
又∵AC=2OE,EF=2OE,
∴AC=EF,
∴平行四边形AECF是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于
的方程
有增根,则
的值为__________.【答案】2
【解析】方程两边都乘(x2),得
x+x2=a,即a=2x2.
分式方程的增根是x=2,
∵原方程增根为x=2,
∴把x=2代入整式方程,得a=2,
故答案为:2.
点睛:本题考查了分式方程的增根,增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.
【题型】填空题
【结束】
17【题目】反比例函数y=
的图象经过点(1,6)和(m,-3),则m= . -
科目: 来源: 题型:
查看答案和解析>>【题目】先化简
÷(
-
),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值【答案】4.
【解析】试题分析:先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.
试题解析:原式=
=
=
.其中
,即x≠﹣1、0、1.又∵﹣2<x≤2且x为整数,∴x=2.
将x=2代入
中得:
=
=4.考点:分式的化简求值.
【题型】解答题
【结束】
21【题目】解方程:

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了了解七年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.

请解答下列问题:
(1)这次随机抽取了 名学生调查,并补全频数分布直方图;
(2)在抽取调查的若干名学生中体重在 组的人数最多,在扇形统计图中D组的圆心角是 度;
(3)请你估计该校七年级体重超过60kg的学生大约有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,
,
与
成正比例,
与
成反比例,并且当
时,
,当
时,
.(
)求
关于
的函数关系式.(
)当
时,求
的值.【答案】(
)
;(
)
,
.【解析】分析:(1)首先根据
与x成正比例,
与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出
和
与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令y=0,即可求出x的值.本题解析:
(
)设
,
,则
,∵当
时,
,当
时,
,∴

解得,
,∴
关于
的函数关系式为
.(
)把
代入
得,
,解得:
,
.点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.
【题型】解答题
【结束】
24【题目】如图,菱形
的对角线
、
相交于点
,过点
作
且
,连接
、
,连接
交
于点
.(1)求证:
;(2)若菱形
的边长为2,
.求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:
购买学校
购买型号及数量(个)
购买支出款项(元)
A
B
甲
3
8
622
乙
5
4
402
(1)求A、B两种型号的篮球的销售单价;
(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形
的对角线
、
相交于点
,过点
作
且
,连接
、
,连接
交
于点
.(1)求证:
;(2)若菱形
的边长为2,
.求
的长.
【答案】(1)证明见解析(2)
【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
(1)证明:在菱形ABCD中,OC=
AC.∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)在菱形ABCD中,∠ABC=60°,
∴AC=AB=2.
∴在矩形OCED中,
CE=OD=
.在Rt△ACE中,
AE=
.点睛:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
【题型】解答题
【结束】
25【题目】如图,反比例函数y=
的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;
(2)结合图像写出不等式
的解集;(3)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.

相关试题