【题目】下列关系中,两个量之间为反比例函数关系的是( )
A.正方形的面积S与边长a的关系
B.正方形的周长L与边长a的关系
C.长方形的长为a,宽为20,其面积S与a的关系
D.长方形的面积为40,长为a,宽为b,a与b的关系
参考答案:
【答案】D
【解析】A、根据题意,得S=a2,所以正方形的面积S与边长a的关系是二次函数关系,A不符合题意;
B、根据题意,得l=4a,所以正方形的周长l与边长a的关系是正比例函数关系,B不符合题意;
C、根据题意,得S=20a,所以正方形的面积S与边长a的关系是正比例函数关系,C不符合题意;
D、根据题意,得b=
,所以正方形的面积S与边长a的关系是反比例函数关系,D符合题意.
所以答案是:D.
【考点精析】解答此题的关键在于理解反比例函数的概念的相关知识,掌握形如y=k/x(k为常数,k≠0)的函数称为反比例函数.自变量x的取值范围是x不等于0的一切实数,函数的取值范围也是一切非零实数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC中,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B,C分别在AD,AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交AF,CF于点N,H.
①求证:BD⊥CF;
②当AB=2,AD=3
时,求线段AN的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D.
(1)求∠CBD的度数;
(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;
(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且S△AOP=4S△BOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】y是x的反比例函数,下表给出了x与y的一些值:
x
﹣2
﹣1
﹣


1
3
y

2
﹣1
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知y是x的反比例函数,且x=8时,y=12.
(1)写出y与x之间的函数关系式;
(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xoy中,已知A(6,0),B(8,6),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC、AB、CD、BD.
(1)写出点C的坐标;
(2)当△ODC的面积是△ABD的面积的3倍时,求点D的坐标;
(3)设∠OCD=α,∠DBA=β,∠BDC=θ,判断α、β、θ之间的数量关系,并说明理由.

相关试题