【题目】如图,矩形纸片ABCD(AD>AB)中,将它折叠,使点A与点C重合,折痕EF交AD于点E,交BC于点F,交AC于点O,连结AF,CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=8,△ABF的面积为9,求AB+BF的值.
![]()
参考答案:
【答案】(1)见解析;(2)10.
【解析】
(1)当顶点A与C重合时,折痕EF垂直平分AC,由OA=OC,得∠AOE=∠COF=90°,由题意得AD∥BC,∠EAO=∠FCO,可证明△AOE≌△COF,从而得出∴四边形AFCE是菱形.
(2)根据四边形AFCE是菱形,得出AF=AE=8,在Rt△ABF中,利用勾股定理得AB2+BF2=AF2,AB2+BF2=82,即可得出(AB+BF)2-2ABBF=64①,根据△ABF的面积为9,可求得ABBF=18②,再由①、②得:(AB+BF)2=100,得出AB+BF=10.
(1)证明:当顶点A与C重合时,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°,
∵在矩形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
∴△AOE≌△COF(ASA),
∴OE=OF,
∴四边形AFCE是平行四边形,
又∵EA=EC
∴平行四边形AFCE是菱形.
(2)∵四边形AFCE是菱形,
∴AF=AE=8,在Rt△ABF中,AB2+BF2=AF2,
∴AB2+BF2=64,∴(AB+BF)2-2AB·BF=64①,
∵△ABF的面积为9,
∴
AB·BF=9,
∴AB·BF=18②,
由①、②得:(AB+BF)2=100,
∵AB+BF>0,
∴AB+BF=10.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.
(1)小明一共走了多少米?
(2)这个多边形的内角和是多少度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在□ABCD中,O是AC、BD的交点,过点O 与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为( ).

A. 8cm B. 10cm C. 11cm D. 12cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知:如图1,P为△ADC内一点,DP、CP分别平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,则∠P=____________°;(答案直接填在题中横线上)
(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并写出你的探索过程;
(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E的数量关系:________________;
(4)若P为n边形A1A2A3…An内一点,PA1平分∠AnA1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠An的数量关系:__________________________.(用含n的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.

(1)求证:四边形AODE是矩形;
(2)若AB=6,∠BCD=120°,求四边形AODE的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面推理过程:
如图,已知
,可推得
,理由如下:
( )且
( )
(等量代换)
( )∴∠ =∠C( ).
又
(已知),
( )
( ) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径

(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求
的值
相关试题