【题目】用配方法解一元二次方程x2﹣4x=5时,此方程可变形为( )
A.(x+2)2=1
B.(x﹣2)2=1
C.(x+2)2=9
D.(x﹣2)2=9
参考答案:
【答案】D
【解析】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.
配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=
BC,连结CD和EF.
(Ⅰ)求证:四边形CDEF是平行四边形;
(Ⅱ)求四边形BDEF的周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线
交x轴于点C,交y轴于点D,与反比例函数
的图像交于两点A、E,AG⊥x轴,垂足为点G,S△AOG=3.(1)k = ;
(2)求证:AD =CE;
(3)如图2,若点E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于O,且∠DOF=75°,求∠BOD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面推理过程.在括号内的横线上填空或填上推理依据.
如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD
证明:∵AB∥EF
∴∠APE=()
∵EP⊥EQ
∴∠PEQ=()
即∠QEF+∠PEF=90°
∴∠APE+∠QEF=90°
∵∠EQC+∠APE=90°
∴∠EQC=
∴EF∥()
∴AB∥CD()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A的坐标为(-1,0),点B的坐标为(4,0),经过点A点B抛物线y=x+bx+c与y轴交于点C.
(1)求抛物线的关系式.
(2)△ABC的外接圆与y轴交于点D,在抛物线上是否存在点M使S△MBC=S△DBC,若存在,请求出点M的坐标.
(3)点P是直线y=-x上一个动点,连接PB,PC,当PB+PC+PO最小时,求点P的坐标及其最小值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程
(1)6x﹣7=4x﹣5
(2)8x=﹣2(x+4)
(3)
﹣1=
.
相关试题