【题目】如图,四边形ABCD的对角线AC、BD相交于点O,分别作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.
![]()
(1)求证:△BOE≌△DOF;
(2)若
,则四边形ABCD是什么特殊四边形?请说明理由.
参考答案:
【答案】(1)证明见解析;(2)解:四边形ABCD是矩形,理由见解析.
【解析】(1)根据AAS或ASA即可证明;(2)结论:矩形. 只要证明对角线AC=BD即可;
解: (1)∴ ∠BEO=90°=∠DFO ,
又∵ OE=OF ∠BOE=∠DOF,
∴ △BOE≌△DOF(ASA),
(2)解:四边形ABCD是矩形,
证明:∵ △BOE≌△DOF,
∴ OB=OD,
∵ OE=OF,CE=AF,
∴ OC=OA,
∴ 四边形ABCD是平行四边形,
∴
,
又∵
,
∴ AC=BD,
∴□ABCD是矩形.
“点睛”本题考查全等三角形的判定与性质、平行四边形的判定和性质. 矩形的判定和性质等知识,解题的关键是熟练掌握基本概念,灵活运用知识解决问题,属于中考常考题型.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中每个小正方形的边长为1cm,平移图中的△ABC,使点B移到点B1的位置.
(1)利用方格和直尺画图
①画出平移后的△A1B1C1
②画出AB边上的中线CD;
③画出BC边上的高AH;
(2)线段A1C1与线段AC的位置关系与数量关系为 ;
(3)△A1B1C1的面积为 cm2;△BCD的面积为 cm2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,∠B=∠C,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连结DE.
(1)若∠BAC=100°,∠DAE=40°,则∠CDE= ,此时
= ;(2)若点D在BC边上(点B、C除外)运动,试探究∠BAD与∠CDE的数量关系并说明理由;
(3)若点D在线段BC的延长线上,点E在线段AC的延长线上(如图②),其余条件不变,请直接写出∠BAD与∠CDE的数量关系: ;
(4)若点D在线段CB的延长线上(如图③)、点E在直线AC上,∠BAD=26°,其余条件不变,则∠CDE= °(友情提醒:可利用图③画图分析)

-
科目: 来源: 题型:
查看答案和解析>>【题目】图①为一种平板电脑保护套的支架效果图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架.平板电脑的下端N保持在保护套CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图②.其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN.我们把∠ANB叫做倾斜角.

(1)当倾斜角为45°时,求CN的长;
(2)按设计要求,倾斜角能小于30°吗?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,延长平行四边形
的边
到点
,使
,连接
交
于点
.(1)求证:
≌
.(2)连接
、
,若
,求证四边形
是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】填写推理理由:
如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.

证明:∵CD∥EF,
∴∠DCB=∠2( ),
∵∠1=∠2,
∴∠DCB=∠1( ).
∴GD∥CB( ),
∴∠3=∠ACB( ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,菱形
的对角线
、
相交于点
,过点
作
且
,连接
、
,连接
交
于点
.
(1)求证:
;(2)如图2,延长
和
相交于点
,不添加任何辅助线的情况下,直接写出图中所有的平行四边形.(除四边形
和四边形
外)
相关试题