【题目】如图1,矩形的一条边长为x,周长的一半为y,定义(x,y)为这个矩形的坐标。如图2,在平面直角坐标系中,直线x=1,y=3将第一象限划分成4个区域,已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中,则下面叙述中正确的是( )
A. 点A的横坐标有可能大于3
B. 矩形1是正方形时,点A位于区域②
C. 当点A沿双曲线向上移动时,矩形1的面积减小
D. 当点A位于区域①时,矩形1可能和矩形2全等
【答案】D
【解析】
A、根据反比例函数k一定,并根据图形得:当x=1时,y<3,得k=xy<3,因为y是矩形周长的一半,即y>x,可判断点A的横坐标不可能大于3;
B、根据正方形边长相等得:y=2x,得点A是直线y=2x与双曲线的交点,画图,如图2,交点A在区域③,可作判断;
C、先表示矩形面积S=x(y-x)=xy-x2=k-x2,当点A沿双曲线向上移动时,x的值会越来越小,矩形1的面积会越来越大,可作判断;
D、当点A位于区域①,得x<1,另一边为:y-x>2,矩形2的坐标的对应点落在区域④中得:x>1,y>3,即另一边y-x>0,可作判断.
如图,设点A(x,y),
A、设反比例函数解析式为:y=(k≠0),
由图形可知:当x=1时,y<3,
∴k=xy<3,
∵y>x,
∴x<3,即点A的横坐标不可能大于3,
故选项A不正确;
B、当矩形1为正方形时,边长为x,y=2x,
则点A是直线y=2x与双曲线的交点,如图2,交点A在区域③,
故选项B不正确;
C、当一边为x,则另一边为y-x,S=x(y-x)=xy-x2=k-x2,
∵当点A沿双曲线向上移动时,x的值会越来越小,
∴矩形1的面积会越来越大,
故选项C不正确;
D、当点A位于区域①时,
∵点A(x,y),
∴x<1,y>3,即另一边为:y-x>2,
矩形2落在区域④中,x>1,y>3,即另一边y-x>0,
∴当点A位于区域①时,矩形1可能和矩形2全等;
故选项④正确;
故选D.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点P是边AB上一点,AB=5BP,点E在对角线AC上,△PEF是直角三角形,PE=PF,AE=2,△APF的面积为12,则BF的长是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC',延长QC′交BA的延长线于点M.
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)求证:MQ=MB;
(3)若AB=3,BP=2PC,求QM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表中,y是x的一次函数.
x |
| 1 | 2 | 5 | |
y | 6 |
|
|
|
(1)求该函数的表达式,并补全表格;
(2)已知该函数图象上一点M(1,-3)也在反比例函数图象上,求这两个函数图象的另一交点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与x轴交于点A,与y轴交于点B(0,2),且与正比例函数y=x的图象交于点C(m,3).
(1)求一次函数y=kx+b(k≠0)的函数关系式;
(2)△AOC的面积为______;
(3)若点M在第二象限,△MAB是以AB为直角边的等腰直角三角形,直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将等边沿
翻折得
,
,点
为直线
上的一个动点,连接
,将线段
绕点
顺时针旋转
的角度后得到对应的线段
(即
),
交
于点
,则下列结论:①
;②
;③当
为线段
的中点时,则
;④四边形
的面积为
;⑤连接
、
,当
的长度最小时,则
的面积为
.则说法正确的有________(只填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍费贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出部分能购买25副乒乓球拍.
(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用.
(2)若购买的两种球拍数一样,求x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com