【题目】如图 1,AM∥CN,点 B 为平面内一点,AB⊥BC 于 B,过 B 作 BD⊥ AM.
(1)求证:∠ABD=∠C;
(2)如图 2,在(1)问的条件下,分别作∠ABD、∠DBC 的平分线交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求证:∠ABF=∠AFB;
②求∠CBE 的度数.
![]()
参考答案:
【答案】(1)见解析;(2)①见解析,②120°.
【解析】
(1)过B作BG∥CN,依据平行线的性质,以及同角的余角相等,即可得到∠ABD=∠C;
(2)①设∠DBE=∠EBA=x,∠ABF=y,依据∠AFB+∠BCN=∠FBC,即可得到∠AFB=y=∠ABF;
②依据∠CBE=90°,AF∥CN,可得∠ABG+∠CBG=90°,∠BCN+∠AFB+∠BFC+∠BCF=180°,解方程组
,即可得到
,进而得出∠CBE=3x+2y=120°.
(1)如图 1,过 B 作 BG∥CN,
![]()
∴∠C=∠CBG
∵AB⊥BC,
∴∠CBG=90°﹣∠ABG,
∴∠C=90°﹣∠ABG,
∵BG∥CN,AM∥CN,
∴AM∥BG,
∴∠DBG=90°=∠D,
∴∠ABD=90°﹣∠ABG,
∴∠ABD=∠C;
(2)①如图 2,设∠DBE=∠EBA=x,则∠BCN=2x,∠FCB=5x, 设∠ABF=y,则∠BFC=1.5y,
![]()
∵BF 平分∠DBC,
∴∠FBC=∠DBF=2x+y,
∵∠AFB+∠BCN=∠FBC,
∴∠AFB+2x=2x+y,
∴∠AFB=y=∠ABF;
②∵∠CBE=90°,AF∥CN,
∴∠ABG+∠CBG=90°,∠BCN+∠AFB+∠BFC+∠BCF=180°,
∴![]()
∴
∴∠CBE=3x+2y=3×30°+2×15°=120°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是( )

A. (1,﹣1) B. (2,0) C. (﹣1,1) D. (﹣1,﹣1)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFI,得到图②.
(1)在图①中,当α=20°,β=50°时,求∠EPF的度数;
(2)在(1)的条件下,求图②中∠END与∠CFI的度数;
(3)在图②中,当FI∥EH时,请求出α与β的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是____________。

-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下列证明:如图,已知AD⊥BC,EF⊥BC,∠1=∠2.
求证: DG∥BA.

证明:∵AD⊥BC,EF⊥BC ( 已知 )
∴∠EFB=90°,∠ADB=90°(_______________________ )
∴∠EFB=∠ADB ( 等量代换 )
∴EF∥AD ( _________________________________ )
∴∠1=∠BAD (________________________________________)
又∵∠1=∠2 ( 已知)
∴ (等量代换)
∴DG∥BA. (__________________________________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米).

相关试题