【题目】在△ABC中,已知∠A+∠B=∠C,则△ABC是( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.无法确定
参考答案:
【答案】A
【解析】解:∠A+∠B=∠C ①
∠A+∠B+∠C=180 ②
联立①②解得∠C=90
则得出△ABC为直角三角形 ;
故应选 :A 。
根据三角形的内角和及等量代换得出∠C=90 °,根据有一个角是直角的三角形是直角三角形从而得出结论。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果x2-2x-m=0有两个相等的实数根,那么x2-mx-2=0的两根和是_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象与反比例函数
(x>0)的图象交于A(2,﹣1),B(
,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示
(1)求甲车从A地到达B地的行驶时间;
(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;
(3)求乙车到达A地时甲车距A地的路程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】探究(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A的关系?直接写出结论,不必说明理由.
思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
应用(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.

相关试题