【题目】如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=
的图象有唯一的公共点C.
(1)求k的值及C点坐标;
(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=
交于D、E两点,求△CDE的面积.
![]()
参考答案:
【答案】(1)k=2; C(1,2);(2)8.
【解析】(1)令-2x+4=
,则2x2-4x+k=0,依据直线y=-2x+4与反比例函数y=
的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;
(2)依据直线l与直线y=-2x+4关于x轴对称,即可得到直线l为y=2x-4,再根据
=2x-4,即可得到E(-1,-6),D(3,2),可得CD=2,进而得出△CDE的面积=
×2×(6+2)=8.
(1)令-2x+4=
,则2x2-4x+k=0,
∵直线y=-2x+4与反比例函数y=
的图象有唯一的公共点C,
∴△=16-8k=0,
解得k=2,
∴2x2-4x+2=0,
解得x=1,
∴y=2,
即C(1,2);
(2)∵直线l与直线y=-2x+4关于x轴对称,
∴A(2,0),B'(0,-4),
∴直线l为y=2x-4,
令
=2x-4,则x2-2x-3=0,
解得x1=3,x2=-1,
∴E(-1,-6),D(3,2),
又∵C(1,2),
∴CD=3-1=2,
∴△CDE的面积=
×2×(6+2)=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙二人驾车分别从A,B两地同时出发,相向而行.下图是二人离A地的距离y(千米)与所用时间x(小时)的关系.
(1)请说明交点P所表示的实际意义: ;
(2)试求出A,B两地之间的距离;
(3)甲从A地到达B地所需的时间为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.
(1)求m、n的值;
(2)求△ABO的面积;
(3)观察图象,直接写出当x满足 时,y1>y2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,△ABC为等边三角形,点D,E为直线BC上两动点,且BD=CE. 点F,点E关于直线AC成轴对称,连接AE,顺次连接A,D,F.
(1)如图1,若点D,点E在边BC上,试判断△ADF的形状并说明理由;
(2)如图2,若点D,点E在边BC外,求证:
.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程
(1)2x2-4x-10=0 (用配方法)
(2)2x2+3x=4(公式法)
(3)(x-2)2=2(x-2)
(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(1)求A型空调和B型空调每台各需多少元;
(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.
(1)求证:DE为⊙O切线;
(2)若⊙O的半径为3,sin∠ADP=
,求AD;(3)请猜想PF与FD的数量关系,并加以证明.

相关试题