【题目】如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.![]()
(1)求证:BD=CE;
(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.![]()
参考答案:
【答案】
(1)
解:由题意得,AB=AC,
∵BD,CE分别是两腰上的中线,
∴AD=
AC,AE=
AB,
∴AD=AE,
在△ABD和△ACE中
,
∴△ABD≌△ACE(ASA).
∴BD=CE;
(2)
四边形DEMN是正方形,
证明:∵E、D分别是AB、AC的中点,
∴AE=
AB,AD=
AC,ED是△ABC的中位线,
∴ED∥BC,ED=
BC,
∵点M、N分别为线段BO和CO中点,
∴OM=BM,ON=CN,MN是△OBC的中位线,
∴MN∥BC,MN=
BC,
∴ED∥MN,ED=MN,
∴四边形EDNM是平行四边形,
由(1)知BD=CE,
又∵OE=ON,OD=OM,OM=BM,ON=CN,
∴DM=EN,
∴四边形EDNM是矩形,
在△BDC与△CEB中,
,
∴△BDC≌△CEB,
∴∠BCE=∠CBD,
∴OB=OC,
∵△ABC的重心到顶点A的距离与底边长相等,
∴O到BC的距离=
BC,
∴BD⊥CE,
∴四边形DEMN是正方形.
【解析】(1)根据已知条件得到AD=AE,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED∥BC,ED=
BC,MN∥BC,MN=
BC,等量代换得到ED∥MN,ED=MN,推出四边形EDNM是平行四边形,(1)知BD=CE,求得DM=EN,得到四边形EDNM是矩形,根据全等三角形的性质得到OB=OC,由三角形的重心的性质得到O到BC的距离=
BC,根据直角三角形的判定得到BD⊥CE,于是得到结论.
【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)),还要掌握正方形的判定方法(先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为 . (用含m,n的式子表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题
(1)计算:|2﹣
|﹣
(
﹣
)+
;
(2)先化简,再求值:
÷
+
,其中x=﹣
. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到如图频数分布直方图.

(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);
(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;
(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的不等式
>
x﹣1.
(1)当m=1时,求该不等式的解集;
(2)m取何值时,该不等式有解,并求出解集.
相关试题