【题目】在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.
(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;
(2)连接DE,如图②,求证:BD2+CD2=2AD2
(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=
,CD=1,则AD的长为 ▲ .(直接写出答案)
![]()
参考答案:
【答案】(1)BC=DC+EC,理由见解析;(2)见解析;(3)![]()
【解析】
(1)根据本题中的条件证出△BAD≌△CAE(SAS), 得到BD=CE,再根据条件即可证出结果.
(2)由(1)中的条件可得∠DCE=∠ACE+∠ACB=90°, 所以CE2+CD2=ED2,可推出BD2+CD2=
,再根据勾股定理可得出结果.
(3)作AE⊥AD,使AE=AD,连接CE,DE,可推出△BAD≌△CAE(SAS),所以BD=CE=
,再根据勾股定理求得DE.
解:(1)结论:BC=DC+EC
理由:如图①中,
∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS);
∴BD=CE,
∴BC=BD+CD=EC+CD,
即:BC=DC+EC.
(2)BD2+CD2=2AD2,
理由如下:连接CE,
![]()
由(1)得,△BAD≌△CAE,
∴BD=CE,∠ACE=∠B,
∴∠DCE=∠ACE+∠ACB=90°,
∴CE2+CD2=ED2,
即:BD2+CD2=ED2;
在Rt△ADE中,AD2+AE2=ED2,又AD=AE,
∴ED2=2AD2;
∴BD2+CD2=2AD2;
(3)AD的长为
(学生直接写出答案).
作AE⊥AD,使AE=AD,连接CE,DE,
![]()
∵∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD与△CAE中,
AB=AC,∠BAD=∠CAE,AD=AE.
∴△BAD≌△CAE(SAS),
∴BD=CE=
,
∵∠ADC=45°,∠EDA=45°,
∴∠EDC=90°,
∴DE2=CE2-CD2=(
)2-12=12,
∴DE=2
,
∵∠DAE=90°,AD2+AE2=DE2,
∴AD=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线
与x轴、y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD,则D点坐标是_______;在y轴上有一个动点M,当
的周长值最小时,则这个最小值是_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.

(1)观察图象,直接写出日销售量的最大值;
(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.
(3)试比较第6天和第13天的销售金额哪天多?
-
科目: 来源: 题型:
查看答案和解析>>【题目】王老汉为了与顾客签订购销合同,对自己鱼塘中鱼的总质量进行了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号的鱼有20条,王老汉的鱼塘中估计有鱼多少条鱼?总质量为多少千克?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=a
-4x+c的图像经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,过点A(﹣
,0)的两条直线分别交y轴于B(0,m)、C(0,n)两点,且m、n(m>n)满足方程组
的解.(1)求证:AC⊥AB;
(2)若点D在直线AC上,且DB=DC,求点D的坐标;
(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,

①判断⊙D与OA的位置关系, 并证明你的结论。
②通过上述证明,你还能得出哪些等量关系?
相关试题