【题目】已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)直线BF垂直直线CE于点F,交CD于点G(如图①),求证:AE=CG;
(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.
![]()
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】
(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG;
(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.
(1)证明:因为直线
垂直
![]()
所以∠CFB=90°,所以∠ECB+∠CBF=90°.
又因为
,所以![]()
因为点
是
的中点,所以![]()
又
所以
≌
,
所以
.
因为
,所以
.
因为∠ACE=∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.
≌![]()
.
(2)解:BE=CM.证明: 因为 ∠ACB=90°,所以 ∠ACH +∠BCF=90°.
因为 CH⊥AM,即∠CHA=90°,所以 ∠ACH +∠CAH=90°,所以 ∠BCF=∠CAH.
在△BCE与△CAM中,BC=CA ,∠BCF=∠CAH,
由(1)知∠CBE=∠ACM,
所以△BCE≌△CAM.所以BE=CF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,以BC为半径作⊙B,交AB于点D,交AB的延长线于点E,连接CD、CE.

(1)求证:△ACD∽△AEC;
(2)当
=
时,求tanE;
(3)若AD=4,AC=4
,求△ACE的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,试求∠DFB和∠DGB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:
小组
研究报告
小组展示
答辩
甲
91
80
78
乙
79
83
90
(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;
(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在海上观察所A,我边防海警发现正北5km的B处有一可疑船只正在向东方向12km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为60km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线经过A(﹣1,0),C(0,﹣5)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P的坐标;
(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作⊙Q,使得⊙Q与直线BC相切,在运动的过程中是否存在一个最大⊙Q?若存在,请直接写出最大⊙Q的半径;若不存在,请说明理由.
相关试题