【题目】已知二次函数y=ax2+bx+c的图象如图,对称轴是直线x=-
,有下列结论:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正确结论的个数是( )
![]()
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】C
【解析】
根据图象知该二次函数的对称轴x=
<0,所以得到ab>0;而x=1时,a+b+c<0;
=
,所以2a=3b,x=-1时,a-b+c>0,所以2a-2b+2c>0,所以得到b+2c>0;根据图象-2b>0,c>0,a-b+c>0,b+2c>0,这几个不等式相加即可得到④正确.
解:①∵
=
<0,∴ab>0,∴该结论正确;
②∵x=1时,y<0,∴a+b+c<0正确,∴该结论正确;
③
=
,∴2a=3b;
又x=-1时,y>0,∴a-b+c>0;
∴2a-2b+2c>0,3b-2b+2c>0;
∴b+2c>0,∴该结论错误;
④由图象知a<0,ab>0;
∴b<0;
∴-2b>0(1)
图象交y轴于正半轴,∴c>0(2);
又a-b+c>0(3),b+2c>0(4);
∴(1)+(2)+(3)+(4)得,a-2b+4c>0,∴该结论正确.
所以正确结论的个数为3.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).
(1)试说明点C在一次函数的图象上;
(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足
?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了参加“仙桃市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(l)班 86,85,77,92,85;八(2)班 79,85,92,85,89.通过数据分析,列表如下:

(1)直接写出表中a,b,c,d的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A1,A2,A3,…,An是x轴上的点,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分别过点A1,A2,A3,…,An作x轴的垂线交二次函数y=
x2(x>0)的图象于点P1,P2,P3,…,Pn.若记△OA1P1的面积为S1,过点P1作P1B1⊥A2P2于点B1,记△P1B1P2的面积为S2,过点P2作P2B2⊥A3P3于点B2,记△P2B2P3的面积为S3……依次进行下去,最后记△Pn-1Bn-1Pn(n>1)的面积为Sn,则Sn=( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0)、C(0,﹣3).

(1)求抛物线的解析式.
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中有
,
为坐标原点,
,将此三角形绕原点
顺时针旋转
,得到
,二次函数
的图象刚好经过
三点.(1)求二次函数的解析式及顶点
的坐标;(2)过定点
的直线
与二次函数图象相交于
两点.①若
,求
的值;②证明:无论
为何值,
恒为直角三角形;③当直线
绕着定点
旋转时,
外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.
相关试题