【题目】如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=
x上一点,则点B与其对应点B′间的距离为 . ![]()
参考答案:
【答案】5
【解析】解:如图,连接AA′、BB′.
∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是4.
又∵点A的对应点在直线y=
x上一点,
∴4=
x,解得x=5.
∴点A′的坐标是(5,4),
∴AA′=5.
∴根据平移的性质知BB′=AA′=5.
故答案为:5.![]()
根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校10名篮球运动员的年龄情况,统计如下表:
年龄/岁
12
13
14
15
人数/名
2
4
3
1
则这10名篮球运动员年龄的中位数为( )
A. 12 B. 13 C. 13.5 D. 14
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为:A(-3,0),B(-1,-2),C(-2,2).
(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形△A′BC′.
(2)请直接写出以A′、B、C′为顶点平行四边形的第4个顶点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数y=mx﹣4m(m是常数,且m≠0)的图象分别交x轴、y轴于点M,N,线段MN上两点A,B(点B在点A的右侧),作AA1⊥x轴,BB1⊥x轴,且垂足分别为A1 , B1 , 若OA1+OB1>4,则△OA1A的面积S1与△OB1B的面积S2的大小关系是( )

A.S1>S2
B.S1=S2
C.S1<S2
D.不确定的 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,点A的坐标是(0,2),点B是x轴上的一个动点,始终保持△ABC是等边三角形(点A、B、C按逆时针排列),当点B运动到原点O处时,则点C的坐标是 . 随着点B在x轴上移动,点C也随之移动,则点C移动所得图象的解析式是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表所示,你认为商家更应该关注鞋子尺码的( )
尺码/cm
22
22.5
23
23.5
24
24.5
25
销售量/双
4
6
6
10
2
1
1
A.平均数 B.中位数 C.众数 D.方差
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. 中位数就是一组数据中最中间的一个数
B. 8,9,9,10,10,11这组数据的众数是9
C. 如果x1,x2,x3,…,xn的平均数是x,那么(x1-x)+(x2-x)+…+(xn-x)=0
D. 一组数据的方差是这组数据的平均数的平方
相关试题