【题目】如图,在平面直角坐标系
中,矩形
的边
在
轴上,顶点
在抛物线
上,且抛物线交
轴于另一点
.![]()
(1)则
= ,
=;
(2)已知
为
边上一个动点(不与
、
重合),连结
交
于点
,过点
作
轴的平行线分别交抛物线、直线
于
、
.
①求线段
的最大值,此时
的面积为;
②若以点
为圆心,
为半径作⊙O,试判断直线
与⊙O的能否相切,若能请求出
点坐标,若不能请说明理由.
参考答案:
【答案】
(1)
,![]()
(2)解:①由点O(0,0)、B(4,2)两点可得直线OB的解析式为
,
设点E的坐标为(m,2),则点F的坐标为(m,
),点G的坐标为(m,
),∴FG=(
)-
=
,
∴当m=2时,线段FG的最大值为1.
此时过E(2,2)、A(4,0)两点直线AE的解析式为y=-x+4,
∴直线OB与直线AE的交点P的坐标为(
,
),
∴
边FG边上的高为
,
∴
的面积为
;②直线AE能与⊙O相切,当直线AE与⊙O相切时,则OB⊥AE,∴△ABE∽△OAB,
∴
,即
,
∴BE=1,CE=3,
∴点E的坐标为(3,2).
【解析】(1)把点B与点D坐标代入抛物线解析式,建立方程,求出a与b的值即可。
(2)①先求出直线OB的解析式,设出E坐标为(m,2),根据EG与y轴平行,表示出F与G坐标,进而表示出FG,,列出FG关于x的函数解析式,利用二次函数性质求出FG最大值,以及此时m的值,确定出E坐标,利用待定系数法求出直线AE解析式,与直线OB联立求出交点P坐标,进而确定出此时三角形PFG面积即可;②当AE⊥OB,垂足为P时,以点O为圆心,OP为半径作 O,直线AE与 O相切,如图所示,根据直线OB解析式确定出直线AE解析式,进而求出垂足P坐标,再证明△ABE∽△OAB,根据相似三角形的性质求出AE、BE的长,即可求出点E的坐标。
【考点精析】关于本题考查的二次函数的最值和相似三角形的判定与性质,需要了解如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
是⊙O外一点,
为切线,割线
经过圆心
.
(1)若
,求
的半径长;
(2)作
的角平分线交
于
,求
的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某电器商城销售
、
两种型号的电风扇,进价分别为
元、
元,下表是近两周的销售情况:销售时段
销售型号
销售收入
种型号
种型号第一周
台
台
元第二周
台
台
元(1)求
、
两种型号的电风扇的销售单价;(2)若商城准备用不多于
元的金额再采购这两种型号的电风扇共
台,求
种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这
台电风能否实现利润超过
元的目标?若能,请给出相应的采购方案;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司在销售一种产品进价为10元的产品时,每年总支出为10万元(不含进价).经过若干年销售得知,年销售量
(万件)是销售单价
(元)的一次函数,并得到如下部分数据:销售单价
(元)16
18[
20[
22
年销售量
(万件)5
4
3
2
(1)则
关于
的函数关系式是;
(2)写出该公司销售这种产品的年利润
(万元)关于销售单价
(元)的函数关系式;当销售单价
为何值时,年利润最大?
(3)试通过(2)中的函数关系式及其大致图象,帮助该公司确定产品的销售单价范围,使年利润不低于14万元(请直接写出销售单价
的范围). -
科目: 来源: 题型:
查看答案和解析>>【题目】计算(1)-32+(-
)-2-(π-5)0-|-2|;(2)
;(3)
;(4) (2m+3)(2m-3)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):
(1)画出△ABC中BC边上的高AD;
(2)画出先将△ABC向右平移6格,再向上平移3格后的△A1B1C1;
(3)画一个△BCP(要求各顶点在格点上,P不与A点重合),使其面积等于△ABC的面积.并回答,满足这样条件的点P共________个.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1的各边长按原法延长一倍得到正方形A2B2C2D2;以此进行下去…则正方形A4B4C4D4的面积为_____;正方形AnBnCnDn的面积为_____.

相关试题