【题目】 如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=( )
![]()
A. 18B. 9![]()
C. 6D. 条件不够,不能确定
参考答案:
【答案】C
【解析】
因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.
延长EP交AB于点G,延长DP交AC与点H.
∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.
又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB
6.
故选C.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】等边△ABC中,点E在AB上,点D在CA的延长线上,且ED=EC.试探索以下问题:
(1)如图1,当E为AB中点时,试确定线段AD与BE的大小关系,请你直接写出结论:AD BE;
(2)如图2,若点E为线段AB上任意一点,(1)中结论是否成立,若成立,请证明结论,若不成立,请说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰三角形ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则下列结论错误的是( )

A. ∠EBC为36° B. BC = AE
C. 图中有2个等腰三角形 D. DE平分∠AEB
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 , 它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 , 交x轴于A2;将C2绕A2旋转180°得到C3 , 交x轴于A3;…如此进行下去,直至得到C2017 . 若点P是第2016段抛物线的顶点,则P点的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知平行四边形ABCD中,AB=5, AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_______;
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标平面中,O为原点,点A的坐标为(20,0),点B在第一象限内,BO=10,sin∠BOA=
.
(1)①在图中,求作△ABO的外接圆;(尺规作图,不写作法但需保留作图痕迹);②求点B的坐标与cos∠BAO的值;
(2)若A,O位置不变,将点B沿
轴正半轴方向平移使得△ABO为等腰三角形,请直接写出平移距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列图形,并阅读相关文字.

2条直线相交,3条直线相交,4条直线相交,5条直线相交;
有2对对顶角,有6对对顶角,有12对对顶角,有20对对顶角;
通过阅读分析上面的材料,计算后得出规律,当n条直线相交于一点时,有多少对对顶角出现(n为大于2的整数).
相关试题