【题目】如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是( )
![]()
A. ∠E=2∠K B. BC=2HI C. 六边形ABCDEF的周长=六边形GHIJKL的周长 D. S六边形ABCDEF=2S六边形GHIJKL
参考答案:
【答案】B
【解析】
试题根据相似多边形的性质对各选项进行逐一分析即可.
解:A、∵六边形ABCDEF∽六边形GHIJKL,∴∠E=∠K,故本选项错误;
B、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴BC=2HI,故本选项正确;
C、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴六边形ABCDEF的周长=六边形GHIJKL的周长×2,故本选项错误;
D、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴S六边形ABCDEF=4S六边形GHIJKL,故本选项错误.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点B为第一象限内一点,点A为x轴正半轴上一点,分别连接OB,AB,△AOB为等边三角形,点B的横坐标为4.

(1)如图1,求线段OA的长;
(2)如图2,点M在线段OA上(点M不与点O、点A重合),点N在线段BA的延长线上,连接MB,MN,BM=MN,设OM的长为t,BN的长为d,求d与t的关系式(不要求写出t的取值范围);
(3)在(2)的条件下,点D为第四象限内一点,分别连接OD,MD,ND,△MND为等边三角形,线段MA的垂直平分线交OD的延长线于点E,交MA于点H,连接AE,交ND于点F,连接MF,若MF=AM+
AN,求点E的横坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.

(1) 求证:DE-BF = EF.
(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系, 并说明理由.
(3) 若点G为CB延长线上一点,其余条件不变.请画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是( )

A. AB=24m B. MN∥AB
C. △CMN∽△CAB D. CM:MA=1:2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AFAC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图(2)所示.已知展开图中每个正方形的边长为1:

(1)在展开图(2)中可画出最长线段的长度为 ,在平面展开图(2)中这样的最长线段一共能画出 条。
(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系,并说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD,△BCE,△ABC的面积分别是S1,S2,S3,现有如下结论:
①S1∶S2=AC2∶BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1·S2=
S23.其中结论正确的序号是__________.

相关试题