【题目】如图(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图(2)所示.已知展开图中每个正方形的边长为1:
![]()
(1)在展开图(2)中可画出最长线段的长度为 ,在平面展开图(2)中这样的最长线段一共能画出 条。
(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系,并说明理由。
参考答案:
【答案】(1)
,4(2)∠A′B′C′=∠ABC,理由详见解析
【解析】
(1)最长线段应为最大的长方形对角线A′C′长度,根据勾股定理求出长度即可.最大长方形有两个,每一个的对角线有两条,共四条.
(2)连接B′C′,证明三角形全等,利用全等三角形对应角相等的性质,得到∠A′B′C′等于90 °.
(1)由图可知最长的线段应该为最大正方形的对角线,即A′C′的长度,根据勾股定理可得A′C′=
.
展开图中这样的长方形有2个,每一个长方形有对角线2条,则图(2)中这样的最长线段一共能画出4条.
(2)
![]()
如图所示:
在直角三角形A′B′D与直角三角形C′B′E中,有
∴
(SAS)
∴∠A′B′D=∠B′C′E
又∠B′C′E+∠C′B′E=90°
∴∠A′B′D+∠C′B′E=90°
即∠A′B′C′=90°
而∠ABC=90°
∴∠A′B′C′=∠ABC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是( )

A. AB=24m B. MN∥AB
C. △CMN∽△CAB D. CM:MA=1:2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是( )

A. ∠E=2∠K B. BC=2HI C. 六边形ABCDEF的周长=六边形GHIJKL的周长 D. S六边形ABCDEF=2S六边形GHIJKL
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AFAC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD,△BCE,△ABC的面积分别是S1,S2,S3,现有如下结论:
①S1∶S2=AC2∶BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1·S2=
S23.其中结论正确的序号是__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】拼图填空:剪裁出若干个大小.形状完全相同的直角三角形,三边长分别记为a.b.c,如图①.





(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和 (填“大于”.“小于”或“等于”)图③中小正方形的面积,用关系式表示为 .
(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有 个正方形,它们的面积之间的关系是 ,用关系式表示为 .
(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方形的面积之间的关系是 ,用关系式表示 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
相关试题