【题目】操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。图①,②,③是旋转三角板得到的图形中的3种情况。研究:
(1)三角板ABC绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图②加以证明。
(2)三角板ABC绕点P旋转,△PBE是否能为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。(图④不用)
![]()
参考答案:
【答案】(1)PD=PE;(2)CE=0或1.
【解析】
试题分析:连接PC,根据题意得出CP=PB,∠ACP=∠B=45°,∠DPC=∠BPE,从而得出△PCD和△PBE全等,从得出答案;第二题分PE=PB,PB=BE和PE=BE三种情况分别进行讨论.
试题解析:(1)由图①可猜想PD=PE,再在图②中构造全等三角形来说明.即PD=PE.
理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP= ∠ACB=45°.
∴∠ACP=∠B=45°.又∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.
∴△PCD≌△PBE. ∴PD=PE.
(2)△PBE是等腰三角形,
①当PE=PB时,此时点C与点E重合,CE=0;
②当PB=BE时,1)E在线段BC上, ,2)E在CB的延长线上,
③当PE=BE时,CE=1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.
(1)求日均销售量y与销售单价x的函数关系式;
(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与探究
数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系.
问题情境:
如图1,三角形纸片ABC中,∠ACB=90°,AC=BC.将点C放在直线l上,点A,B位于直线l的同侧,过点A作AD⊥l于点D.

初步探究:
(1)在图1的直线l上取点E,使BE=BC,得到图2.猜想线段CE与AD的数量关系,并说明理由;

变式拓展:
(2)小颖又拿了一张三角形纸片MPN继续进行拼图操作,其中∠MPN=90°,MP=NP.小颖在图 1 的基础上,将三角形纸片MPN的顶点P放在直线l上,点M与点B重合,过点N作NH⊥l于点 H.
请从下面 A,B 两题中任选一题作答,我选择_____题.
A.如图3,当点N与点M在直线l的异侧时,探究此时线段CP,AD,NH之间的数量关系,并说明理由.

B.如图4,当点N与点M在直线l的同侧,且点P在线段CD的中点时,探究此时线段CD,AD,NH之间的数量关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂现在平均每天比原计划多生产 50 台机器,现在生产 600 台机器所需时间与原计划生产 450 台机器所需时间相同.
(1)现在平均每天生产多少台机器;
(2)生产 3000 台机器,现在比原计划提前几天完成.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
与函数
的图象交于
,
两点,
轴于C,
轴于D
求k的值;
根据图象直接写出
的x的取值范围;
是线段AB上的一点,连接PC,PD,若
和
面积相等,求点P坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐上,且点A(0,2),点C(
,0),如图所示:抛物线
经过点B。
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是( )
A.
B.
C.
D. 
相关试题