【题目】如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).![]()
(1)请画出△ABC关于y轴对称的△A1B1C1;
(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2 , 请在第三象限内画出△A2B2C2 , 并求出
的值.
参考答案:
【答案】
(1)
△A1B1C1如图所示;
![]()
(2)
△A2B2C2如图所示,
∵△A1B1C1放大为原来的2倍得到△A2B2C2,
∴△A1B1C1∽△A2B2C2,且相似比为
,
∴S△A1B1C1:S△A2B2C2=(
)2=
.
【解析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)连接A1O并延长至A2 , 使A2O=2A1O,连接B1O并延长至B2 , 使B2O=2B1O,连接C1O并延长至C2 , 使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
【考点精析】解答此题的关键在于理解作轴对称图形的相关知识,掌握画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线,以及对作图-位似变换的理解,了解对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个.位似中心,位似比是它的两要素.
-
科目: 来源: 题型:
查看答案和解析>>【题目】生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的
,则梯子比较稳定,如图,AB为一长度为6米的梯子.(1)当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?
(2)如图2,若梯子底端向左滑动(3
﹣2)米,那么梯子顶端将下滑多少米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点
(1) 试求a和b的值
(2) 点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?
(3) 点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问
的值是否发生变化,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=
x+1与抛物线y=ax2+bx﹣3交于A,B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A,B重合),过点P作x轴的垂线交直线AB与点C,作PD⊥AB于点D
(1)①求抛物线的解析式;②求sin∠ACP的值
(2)设点P的横坐标为m
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把△PDB分成两个三角形,求出当这两个三角形面积之比为9:10时的m值;
③是否存在适合的m值,使△PCD与△PBD相似?若存在,直接写出m值;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了
,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( )
A.
=
× 
B.
=
× 
C.
+
= 
D.
﹣
= 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?
相关试题