【题目】一副三角板的两块三角板的三个角度数分别为90°、60°、30°和90°、45°、45°,我们可以用三角板的角拼出一些特殊度数的角.
![]()
(1)两块三角板按如图1所示拼接,则∠BAD的度数是 °.
(2)小明用两块三角板按图2拼出的∠PMN的度数是 °.
(3)小明想画出图2拼出的∠PMN的角平分线,请你只用一副三角板在图3中帮小明完成画图.(不写画法,保留画图痕迹,标出必要的度数)
参考答案:
【答案】(1)15;(2)150;(3)见解析
【解析】
(1)两块三角板按如图1所示拼接,得∠BAD的度数是 45°﹣30°=15°.
(2)两块三角板按图2拼出的∠PMN的度数是90°+60°=150°.
(3)画出图2拼出的∠PMN的角平分线,用一副三角板的45度角加上30度角即可在图3中完成画图.
解:如图所示:
![]()
(1)如图1,得:∠BAD= ∠BAC∠DAE=45°﹣30°=15°,
故答案为:15;
(2)如图2,得:∠PMN=∠GMN+∠PMH =90°+60°=150°,
故答案为:150;
(3)由(2)可知∠PMN=150°,
根据角平分线的定义,∠PMN可分为度数都是75°的两个角,
则用一副三角板的45度角加上30度角即可得出75°,
所以用一副三角板的45度角加上30度角即可在图3中完成画图.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)(方法回顾)证明:三角形中位线定理.
已知:如图1,
中,D、E分别是AB、AC的中点.求证:
,
.证明:如图1,延长DE到点F,使得
,连接CF;请继续完成证明过程;

(2)(问题解决)
如图2,在矩形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若
,
,
,求GF的长.(3)(思维拓展)
如图3,在梯形ABCD中,
,
,
,E为AD的中点,G、F分别为AB、CD边上的点,若
,
,
,求GF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在直线折叠得到△AGE,延长AG交CD于点F,已知CF=2,FD=1,则BC的长是( )

A.3
B.2
C.2
D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】补全下面的解题过程:

如图,已知OC是∠AOB内部的一条射线,OD是∠AOB的平分线,∠AOC=2∠BOC且∠BOC=40°,求∠COD的度数.
解:因为∠AOC=2∠BOC,∠BOC=40°,所以∠AOC=_____°,所以∠AOB=∠AOC+∠_____=_____°.
因为OD平分∠AOB,所以∠AOD=
∠_____=_____°,所以∠COD=∠_____﹣∠AOD=_____°. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线
过点
,且与函数
的图象相交于
两点,与
轴、
轴分别交于点
,如图所示,四边形
均为矩形,且矩形
的面积为
.(1)求
的值;(2)当点
的横坐标为
时,求直线
的解析式及线段
的长;(3)如图是小芳同学对线段
的长度关系的思考示意图.记点
的横坐标为
,已知当
时,线段
的长随
的增大而减小,请你参考小芳的示意图判断:当
时,线段
的长随
的增大而 . (填“增大”、“减小”或“不变”)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.

(1)根据折线图把下列表格补充完整;
运动员
平均数
中位数
众数
甲
8.5
9
乙
8.5
(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:
收费项目
收费标准
3公里以内收费
13元
基本单价
2.3元/公里
……
……
备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低速和等候);②行驶路程3公里以上时,计价器每500米计价1次,且每1公里中前500米计价1.2元,后500米计价1.1元.
下面是小明的探究过程,请补充完整:
记一次运营出租车行驶的里程数为
(单位:公里),相应的实付车费为
(单位:元).(1)下表是y随x的变化情况
行驶里程数x
0
0<x<3.5
3.5≤x<4
4≤x<4.5
4.5≤x<5
5≤x<5.5
…
实付车费y
0
13
14
15
…
(2)在平面直角坐标系
中,画出当
时
随
变化的函数图象;
(3)一次运营行驶
公里(
)的平均单价记为
(单位:元/公里),其中
.①当
和
时,平均单价依次为
,则
的大小关系是____________;(用“<”连接)②若一次运营行驶
公里的平均单价
不大于行驶任意
(
)公里的平均单价
,则称这次行驶的里程数为幸运里程数.请在上图中
轴上表示出
(不包括端点)之间的幸运里程数
的取值范围.
相关试题