【题目】如图1,在平面直角坐标系中,直线y=-x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(-4,5),并与y轴交于点C,抛物线的对称轴为直线x=-1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=-1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
![]()
参考答案:
【答案】(1)抛物线的表达式为y=x2+2x-3;(2)△ACE的面积的最大值为
;(3)当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
【解析】试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据
=
,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
![]()
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=
EF·AG-
EF·HC=
EF·OA=-
(m+
)2+
.
∴△ACE的面积的最大值为
;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴
=
,
=
,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=120°,连接AC.
(1)求∠A的度数;
(2)若点D到BC的距离为2,那么⊙O的半径是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=-
x2-
x+2与x轴交于A,B两点,与y轴交于点C.(1)求点A,B,C的坐标;
(2)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】方程2x﹣5=3的解为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】体育委员统计了全班同学60 s跳绳的次数,并列出频数分布表如下:
次数
60≤x<80
80≤x<100
100≤x<120
120≤x<140
140≤x<160
160≤x<180
频数
2
4
21
13
8
4
(1)全班有多少学生?
(2)组距是多少?组数是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】若x2+3x一5的值为7,则3x2+9x一2的值为( )
A.44
B.34
C.24
D.14 -
科目: 来源: 题型:
查看答案和解析>>【题目】点p(5,﹣3)关于原点对称的点的坐标是( )
A.(3,﹣5)
B.(﹣5,﹣3)
C.(﹣5,3)
D.(﹣3,5)
相关试题