【题目】已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
参考答案:
【答案】
(1)解:y=50x+45(80﹣x)=5x+3600,
由题意得,
,
解不等式①得,x≤44,
解不等式②得,x≥40,
所以,不等式组的解集是40≤x≤44,
∵x为整数,
∴x=40,41,42,43,44,
∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44)
(2)解:∵k=5>0,
∴y随x的增大而增大,
∴当x=44时,y最大=3820,
即,生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元
【解析】(1)根据总利润等于M、N两种型号时装的利润之和列式整理即可,再根据M、N两种时装所用A、B两种布料不超过现有布料列出不等式组求解即可;(2)根据一次函数的增减性求出所获利润最大值即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】太阳半径约为696000km,将696000用科学记数法表示为( )
A.696×103
B.69.6×104
C.6.96×105
D.0.696×106 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知xa=4,xb=3,求x3a+b的值是_______ .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一组数据75, 80,85,90,80则它的众数和中位数分别为( )
A.75,80B.80,85C.80,90D.80,80
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚家装修,准备安装照明灯.他和爸爸到市场进行调查,了解到某种优质品牌的一盏40瓦白炽灯的售价为1.5元,一盏8瓦节能灯的售价为22.38元,这两种功率的灯发光效果相当.假定电价为0.45元/度,设照明时间为x(小时),使用一盏白炽灯和一盏节能灯的费用分别为y1(元)和y2(元)[耗电量(度)=功率(千瓦)×用电时间(小时),费用=电费+灯的售价].
(1)分别求出y1、y2与照明时间x之间的函数表达式;
(2)你认为选择哪种照明灯合算?
(3)若一盏白炽灯的使用寿命为2000小时,一盏节能灯的使用寿命为6000小时,如果不考虑其他因素,以6000小时计算,使用哪种照明灯省钱?省多少钱? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD内有一点P,PA=3,PB=2,PC=1,求∠BPC的度数.
分析:根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′,这时再分别求出∠BP′P和∠AP′P的度数.
解答:(1)请你根据以上分析再通过计算求出图2中∠BPC的度数;
(2)如图3,若在正六边形ABCDEF内有一点P,且PA=2
,PB=4,PC=2,求∠BPC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
相关试题