【题目】在下面的图形中,对称轴条数最少的图形是( )
A.圆B.长方形C.正三角形D.正六边形
参考答案:
【答案】B
【解析】
根据轴对称图形的定义,分别找出题干中的图形的所有对称轴条数,即可进行判断.
A、圆有无数条对称轴,
B、长方形有2条对称轴,
C、正三角形有3条对称轴,
D、正六边形有6条对称轴,
所以最少的是长方形.
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(2x﹣1)2﹣2(x+3)(x﹣3).
-
科目: 来源: 题型:
查看答案和解析>>【题目】一组数据23、20、20、21、26,这组数据的中位数和众数分别是( )
A. 21,20 B. 22,20 C. 21,26 D. 22,26
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中是真命题的是
A.两边相等的平行四边形是菱形
B.一组对边平行一组对边相等的四边形是平行四边形
C.两条对角线相等的平行四边形是矩形
D.对角线互相垂直且相等的四边形是正方形
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016广东省梅州市第15题)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(
,0),B(0,2),则点B2016的坐标为______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016湖南省岳阳市第24题)如图①,直线y=
x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016重庆市第26题)如图1,二次函数
的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;
(2)点P是线段AB上一点,点D是线段BC上一点,PD//x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F,当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+
BH的值最小,求点H的坐标和GH+
BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数
沿直线BC平移,平移的距离是t(t≥0),平移后抛物线使点A,点C的对应点分别为点A’,点C’;当△A’C’K是直角三角形时,求t的值。
相关试题