【题目】如图,一次函数y=ax+b的图象与反比例函数y= 的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD⊥x轴于D.
(1)求这两个函数的解析式:
(2)求△ADC的面积.


参考答案:

【答案】
(1)解:∵反比例函数y= 的图象过B(4,﹣2)点,

∴k=4×(﹣2)=﹣8,

∴反比例函数的解析式为y=﹣

∵反比例函数y= 的图象过点A(﹣2,m),

∴m=﹣ =4,即A(﹣2,4).

∵一次函数y=ax+b的图象过A(﹣2,4),B(4,﹣2)两点,

解得

∴一次函数的解析式为y=﹣x+2;


(2)解:

∵直线AB:y=﹣x+2交x轴于点C,

∴C(2,0).

∵AD⊥x轴于D,A(﹣2,4),

∴CD=2﹣(﹣2)=4,AD=4,

∴SADC= CDAD= ×4×4=8.


【解析】(1)因为反比例函数过A、B两点,所以可求其解析式和m的值,从而知A点坐标,进而求一次函数解析式;(2)先求出直线AB与与x轴的交点C的坐标,再根据三角形的面积公式求解即可.

关闭