【题目】【问题情境】:
如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE//AB,通过平行线性质来求∠APC.![]()
(1)按小明的思路,求∠APC的度数;
(2)【问题迁移】:
如图2,AB//CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;![]()
(3)【问题应用】:
在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
参考答案:
【答案】
(1)
解:∵AB//CD,
∴PE//AB//CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
(2)
解:∠APC=∠α+∠β,
理由:如图2,过P作PE//AB交AC于E,
![]()
∵AB//CD,
∴AB//PE//CD,
∴∠α=∠APE,∠β=∠CPE,
∴∠APC=∠APE+∠CPE=∠α+∠β;
(3)
解:如图所示,当P在BD延长线上时,
∠CPA=∠α﹣∠β;
![]()
如图所示,当P在DB延长线上时,
∠CPA=∠β﹣∠α.
![]()
【解析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.
【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系中,矩形OABC的顶点A在x轴上,顶点C在y轴上,B(4,3),连接OB,将△OAB沿直线OB翻折,得△ODB,OD与BC相交于点E,若双曲线
经过点E,则k=_____;
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a+b=2,ab=1,则a2b+ab2的值为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简m﹣n﹣(m+n)的结果是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=c,AC=b.AD是△ABC的角平分线,DE⊥A于E,DF⊥AC于F,EF与AD相交于O,已知△ADC的面积为1.
(1)证明:DE=DF;
(2)试探究线段EF和AD是否垂直?并说明理由;
(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△AOB中,A(-8,0),B(0,
),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为 ;
(2)求证:EF为⊙P的切线;
(3)若点H是
上一动点,连接OH、FH,当点H在
上运动时,试探究
是否为定值?若为定值,求其值;若不是定值,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了帮助某地区重建家园,某班全体学生积极捐款,捐款金额共2600元,其中18名女生人均捐款a元,则该班男生共捐款元.(用含有a的代数式表示)
相关试题