【题目】为了帮助某地区重建家园,某班全体学生积极捐款,捐款金额共2600元,其中18名女生人均捐款a元,则该班男生共捐款元.(用含有a的代数式表示)
参考答案:
【答案】(2600﹣18a)
【解析】解:由题意得:18名女生共捐款18a元,
则该班男生共捐款(2600﹣18a)元.
所以答案是:(2600﹣18a).
-
科目: 来源: 题型:
查看答案和解析>>【题目】【问题情境】:
如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE//AB,通过平行线性质来求∠APC.
(1)按小明的思路,求∠APC的度数;
(2)【问题迁移】:
如图2,AB//CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)【问题应用】:
在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=c,AC=b.AD是△ABC的角平分线,DE⊥A于E,DF⊥AC于F,EF与AD相交于O,已知△ADC的面积为1.
(1)证明:DE=DF;
(2)试探究线段EF和AD是否垂直?并说明理由;
(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△AOB中,A(-8,0),B(0,
),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为 ;
(2)求证:EF为⊙P的切线;
(3)若点H是
上一动点,连接OH、FH,当点H在
上运动时,试探究
是否为定值?若为定值,求其值;若不是定值,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面推理过程:
如图,已知∠1=∠2,∠B=∠C,可推得AB//CD.理由如下:
∵∠1=∠2 ,
且∠1=∠CGD ,
∴∠2=∠CG ,
∴CE//BF ,
∴∠=∠C两直线平行,同位角相等;
又∵∠B=∠C(已知),
∴∠BFD=∠B,
∴AB//CD . -
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是 ( )
A. 300名学生是总体 B. 300是众数
C. 30名学生是抽取的一个样本 D. 30是样本的容量
-
科目: 来源: 题型:
查看答案和解析>>【题目】用配方法解方程2x2-4x=3时,先把二次项系数化为1,然后方程的两边都应加上_____________.
相关试题