【题目】如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②为备用图)
(1)当P在AB上,t= s时,△APE的面积为长方形面积的
;
(2)整个运动过程中,t为何值时,△APE为直角三角形?
![]()
参考答案:
【答案】(1)4;(2)当t=3s或t=
s时,△APE为直角三角形.
【解析】
(1)设t秒后,△APE的面积为长方形面积的
,根据题意得:△APE的面积=
APAD=
t×4=
,从而求得t值;
(2)①当P运动到AB中点时△AEP为直角三角形,此时∠APE为直角,t=3;②当P运动到BC上时,∠AEP为直角时利用相似三角形求得PB的长即可求得t值.
(1)设t秒后,△APE的面积为长方形面积的
,根据题意得:AP=t,∴△APE的面积=
APAD=
t×4=
,解得:t=4,∴4秒后,△APE的面积为长方形面积的
;
(2)①当t=3时,AP=3,如图1所示:
∵E为CD的中点,∴CE=DE=3.
∵四边形ABCD是矩形,BC=AD=4,∴四边形APED是矩形,∴PE⊥AB,∴△APE是直角三角形;
②当P在BC上时,若△APE是直角三角形,∠AED+∠PEC=90°,如图2所示:
∵∠ADE=∠ECP=90°,∴∠AED=∠EPC,∴△ADE∽△ECP,∴
=
,解得:CP=
=
=
,∴PB=BC﹣PC=4﹣
=
,∴t=6+
=
.
综上所述:当t=3s或t=
s时,△APE为直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2(2-5)+1=2(-3)+1=-6+1=-5.
(1)求(-2)⊕3的值
(2)若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一条高速公路在城市A的东偏北30°方向直线延伸,县城M在城市A东偏北60°方向上,测验员从A沿高速公路前行4000米到达C,测得县城M位于C的北偏西60°方向上,现要设计一条从县城M进入高速公路的路线,请在高速公路上寻找连接点N,使修建到县城M的道路最短,试确定N点的位置并求出最短路线长.(结果取整数,
≈1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,AB=13,AC=20,BC=21,AD⊥BC,垂足为点D.
(1)求BD、CD的长;
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某天放学后,小红步行,小丽骑自行车沿同一条笔直的马路到图书馆看书,图中线段OA、BC分别表示小红、小丽离开学校的路程s(米)与小红所用的时间t(分钟)的函数关系,根据图象解答下列问题:
(1)小丽比小红迟出发 分钟,小红步行的速度是 米/分钟;(直接写出结果)
(2)两人在路上相距不超过200米的时间有多少分钟?

相关试题