【题目】如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D;CE平分∠ACB,交AB于点E,交BD于点F.
(1)求证:△BEF是等腰三角形;
(2)求证:BD=
(BC+BF).
![]()
参考答案:
【答案】(1)证明见解析(2)证明见解析
【解析】试题分析:
根据
以及
即可得到
即可判定
是等腰三角形;
延长AB至M,使得BM=AB,连接CM,根据三角形中位线定理可得
再根据
,可得
进而得出![]()
试题解析:
在△ABC中,AB=BC,BD⊥AC于点D,
∴∠ABD=∠CBD,AD=CD,
![]()
![]()
∵CE平分∠ACB,
![]()
![]()
∴BE=BF,
∴△BEF是等腰三角形;
如图,延长AB至M,使得BM=AB,连接CM,
![]()
![]()
![]()
![]()
∴BC=BM,
由
得,∠BEF=∠BFE,BE=BF,
∴∠BFE=∠MCE=∠BEF,
∴EM=MC,
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A.线段AB和线段BA表示的不是同一条线段B.x2y的系数是1,次数是2
C.多项式4x2y﹣2xy+1的次数是3D.射线AB和射线BA表示的是同一条射线
-
科目: 来源: 题型:
查看答案和解析>>【题目】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是( )
A. ①②③ B. ①③ C. ②③ D. ①②
-
科目: 来源: 题型:
查看答案和解析>>【题目】在“长方体、圆柱、圆锥 ”三种几何体中,用一个平面分别去截三种几何体,则截面的形状可以截出长方形也可以截出圆形的几何体是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是某同学对多项式(x2-4x-3)(x2-4x+1)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y-3)(y+1)+4 (第一步)
= y2-2y+1 (第二步)
=(y-1)2 (第三步)
=(x2-4x-1)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于二次函数
和一次函数
,把
称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:【尝试】(1)当t=2时,抛物线
的顶点坐标为 ;(2)判断点A (填是或否)在抛物线L上;
(3)n的值是 ;
【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
【应用】二次函数
是二次函数
和一次函数
的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:
①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:
(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;
(2)结合你的示意图,写出求电线杆高度的思路.

相关试题