【题目】某校门前正对一条公路,车流量较大,为便于学生安全通过,特建一座人行天桥.如图,是这座天桥的引桥部分示意图,上桥通道由两段互相平行的楼梯AB、CD和一段平行于地面的平台CB构成.已知∠A=37°,天桥高度DH为5.1米,引桥水平跨度AH为8.3米.![]()
(1)求水平平台BC的长度;![]()
(2)若两段楼梯AB:CD=10:7,求楼梯AB的水平宽度AE的长.
(参考数据:sin37°≈
,cos37°≈
,tan37°≈
)
参考答案:
【答案】
(1)
解:延长DC交AH于F,
根据题意得,四边形BCFA为平行四边形,
故BC=AF,BA=CF,
∵BA∥CF,
∴∠HFC=∠A=37°,
在RT△DHF中,DH=5.1,
∴HF=
═6.8(m),
∴BC=AH﹣HF=1.5(m)
(2)
解:如图
![]()
作CG⊥AH于G,得CG=BE,
∵CG∥DH,
∴△FCG∽△FDH,
∴
,
∵AB:CD=10:7,
∴
,
∴CG=3,
∴AE=
=4米
【解析】(1)延长DC交AH于F,根据题意得,四边形BCFA为平行四边形,在RT△DHF中,求出HF,则可得出BC的长度.(2)先判断出△FCG∽△FDH,然后根据AB:CD=10:7,可得出
=
,继而可解出CG的长度,也可得出AE的长.
【考点精析】掌握关于坡度坡角问题是解答本题的根本,需要知道坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )
A. ∠A: ∠B: ∠C =3∶4∶5 B. ∠A=∠B+∠C
C. a2=(b+c)(b-c) D. a:b:c =1∶2∶

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/分钟
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
则5月份通话次数中,通话时间不超过15分钟的所占百分比是( )
A. 10% B. 40% C. 50% D. 90%
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE∥BF,∠1与∠2互补.
(1)试说明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=
交于C、D两点.已知点C坐标为(﹣4,﹣1),点D的横坐标为2.
(1)求反比例函数与一次函数的解析式;
(2)若点P为坐标轴上一点,且S△ACP=2S△ABO , 请直接写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:
分数段
频数
频率
60≤x<70
30
0.15
70≤x<80
m
0.45
80≤x<90
60
n
90≤x≤100
20
0.1
请根据以上图表提供的信息,解答下列问题:
(1)这次随机抽查了 名学生;表中的数m= ,n= ;
(2)请在图中补全频数分布直方图;
(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是 ;
(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?

相关试题