【题目】小学我们已经知道三角形三个内角和是180°,对于如图1中,
,
交于
点,形成的两个三角形中的角存在以下关系:①
;②
.试探究下面问题:
已知
的平分线
与
的平分线
交于点
,
![]()
(1)如图2,若
,
,
,则
_________;
(2)如图3,若
不平行
,
,
,则
_______.
(3)在总结前两问的基础上,借助图3,探究
与
、
之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.
参考答案:
【答案】(1)35°;(2)40°;(3)∠D+∠B=2∠E,理由见解析
【解析】
(1)(2)在△CDF和△AEF中,有:∠D+∠DCF= ∠E+∠DAE①;在△ABG和△CEG中, ∠B+∠EAB= ∠E+∠BCE②;①+②再结合
的平分线
与
的平分线
交于点
,进行化简得到∠E=
(∠B+∠D),然后将∠B和∠D代入即可解答;
(3)根据(1)(2)的推导即可得到∠D+∠B=2∠E.
解:(1)如图2在△CDF和△AEF中,有∠D+∠DCF= ∠E+∠DAE①
△ABG和△CEG中, 有∠B+∠EAB= ∠E+∠BCE②
①+②得:∠D+∠DCF+∠B+∠EAB=∠E+∠DAE+∠E+∠BCE
又∵
的平分线
与
的平分线
交于点![]()
∴∠DCF=∠BCE,∠EAB=∠DAE
∴∠E=
(∠B+∠D)
∵
,![]()
∴∠E=35°
(2)如图3:同(1)可得∠E=
(∠B+∠D)
∵
,![]()
∴∠E=40°
(3)解:∠D+∠B=2∠E.
理由如下:
在△CDF和△AEF中,有∠D+∠DCF= ∠E+∠DAE①
△ABG和△CEG中, 有∠B+∠EAB= ∠E+∠BCE②
①+②得:∠D+∠DCF+∠B+∠EAB=∠E+∠DAE+∠E+∠BCE
又∵
的平分线
与
的平分线
交于点![]()
∴∠DCF=∠BCE,∠EAB=∠DAE
∴∠E=
(∠B+∠D)
∴∠D+∠B=2∠E
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,沿图示的中位线DE剪一刀,拼成如图1所示的平行四边形BCFD.请仿上述方法,按要求完成下列操作设计,并在规定位置画出图示:
(1)在△ABC中,若∠C=90°,沿着中位线剪一刀,可拼成矩形或等腰梯形,请将拼成的图形画在图2位置(只需画一个);
(2)在△ABC中,若AB=2BC,沿着中位线剪一刀,可拼成菱形,并将拼成的图形画在图3位置;
(3)在△ABC中,需增加什么条件,沿着中位线剪一刀,拼成正方形,并将拼成的图形和符合条件的三角形一同画在图4位置;
(4)在△ABC中,若沿着某条线剪一刀,能拼成等腰梯形,请将拼成的图形画在图5位置(保留寻求剪裁线的痕迹).


-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平行四边形ABCD中,连接对角线BD,作AE⊥BD于E,CF⊥BD于F,

(1)求证:△AED≌△CFB;
(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD的周长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )

A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸上的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣2,﹣1).
(1)把△ABC向左平移4格后得到△A1B1C1,画出△A1B 1C1并写出点A1的坐标;
(2)把△ABC绕点C按顺时针旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点A2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
求证:∠A+∠C=180°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2
.
以上结论中,你认为正确的有 . (填序号)
相关试题