【题目】如图,正方形纸片ABCD的边长为3,点E,F分别在边BC、CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为( )![]()
A.1.5
B.2.5
C.2.25
D.3
参考答案:
【答案】B
【解析】解:∵正方形纸片ABCD的边长为3,
∴∠C=90°,BC=CD=3,
根据折叠的性质得:EG=BE=1,GF=DF,
设DF=x,
则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,
∵在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=1.5,
∴DF=1.5,EF=1+1.5=2.5.
所以答案是:B.
【考点精析】利用正方形的性质和翻折变换(折叠问题)对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小亮早晨从家骑车到学校,先上坡后下坡,所行路程y(米)与时间x(分钟)的关系如图所示,若返回时上坡、下坡的速度仍与去时上、下坡的速度分别相同,则小明从学校骑车回家用的时间是________分钟.

-
科目: 来源: 题型:
查看答案和解析>>【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数
,当x=1时,y=3;当x=3时,y=1,即当
时,有
,所以说函数
是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=
是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;
(2)若二次函数y=
是闭区间[1,2]上的“闭函数”,求k的值;
(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的表达式(用含m,n的代数式表示). -
科目: 来源: 题型:
查看答案和解析>>【题目】在综合与实践课上,同学们以“一个含
的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线
且
和直角三角形
,
,
,
.操作发现:
(1)在如图1中,
,求
的度数;(2)如图2,创新小组的同学把直线
向上平移,并把
的位置改变,发现
,说明理由;实践探究:
(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,
平分
,此时发现
与
又存在新的数量关系,请直接写出
与
的数量关系.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,D是AB的中点,点E、F分别在AC、BC边上运动
点E不与点A、C重合
,且保持
,连接DE、DF、
在此运动变化的过程中,有下列结论:
;
四边形CEDF的面积随点E、F位置的改变而发生变化;
;
以上结论正确的是______
只填序号
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,P为射线BC上任意一点
点P和点B不重合
,分别以AB,AP为边在
内部作等边
和等边
,连结QE并延长交BP于点F,连接EP,若
,
,则
______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
与y轴交于点A,与直线y=﹣
交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣
上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )
A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1
相关试题